Environmental Earth Sciences

, 75:1490 | Cite as

Distribution and enrichment of trace metals and arsenic at the upper layer of sediments from Lerma River in La Piedad, Mexico: case history

  • Benjamín Villalobos-Castañeda
  • Raúl Cortés-Martínez
  • Nuria Segovia
  • Otoniel Buenrostro-Delgado
  • Ofelia Morton-Bermea
  • Ruth Alfaro-Cuevas-VillanuevaEmail author
Original Article


Lerma River is one of the largest rivers in Mexico. Over the past 20 years, unplanned population growth occurred along its course and the river has been used as the only outlet for industrial and domestic wastewater disposal. The aim of the present study was to determine trace metals such as Cr, Ni, Cu, Zn, Fe, Pb, and arsenic concentrations at the upper layer of sediments of the Lerma River meander in La Piedad, Michoacan, Mexico. Sediment samples were collected from eight different sites during the rainy and dry seasons. All samples were physically characterized, and concentration values of trace metals and As were determined. On the basis of protection criteria for freshwater sediments, concentrations of Fe, Zn, Cu, Ni, and Pb were found to exceed the lowest effect level; moreover, the concentrations were found to exceed the severe effect level at some sites, particularly for Cu. Statistical analyses showed significant differences between sampling seasons for Fe and As, and among sites for Ni, Cu, Zn, and Pb. In addition, the enrichment factor indicates the following order Zn > Cr > Cu > Ni > Pb > As, and the geoaccumulation index (I geo) indicates contamination in the following order Zn > Cr > Cu > Ni > As > Pb. The Lerma River meander in La Piedad shows a reduction in pollution by trace metals and arsenic near the drain area and downstream of the meander. However, there are significantly higher concentrations of these elements in sediments of sites located in the middle part of the city.


Arsenic Trace metals Lerma River Mexico Sediments 



The authors acknowledge financial support from the Fondos Mixtos-Conacyt Gobierno del Estado de Michoacán, project 73881. We are grateful for the suggestions of two anonymous reviewers whose comments substantially improved the present paper.


  1. Aburto-Medina A, Castillo D, Ortiz I, Hernández E, List R, Adetutu E (2015) Microbial community and pollutants survey in sediments of biologically important wetlands in Lerma, Mexico. Rev Int Contam Ambient 31(1):7–22Google Scholar
  2. Alves R, Sampaio C, Nadal M, Schuhmacher M, Domingo J, Segura-Muñoz S (2014) Metal concentrations in surface water and sediments from Pardo River, Brazil: human health risks. Environ Res 133(2014):149–155CrossRefGoogle Scholar
  3. Ávila-Pérez P, Balcázar M, Zarazúa-Ortega G, Barceló-Quintal I, Díaz-Delgado C (1999) Heavy metal concentrations in water and bottom sediments of a Mexican reservoir. Sci Total Environ 234:185–196CrossRefGoogle Scholar
  4. Ávila-Pérez P, García-Aragón JA, Díaz-Delgado C, Tejeda-Vega S, Reyes-Gutiérrez R (2002) Heavy metal distribution in bottom sediments of a Mexican reservoir. Aquat Ecosyst Health Manage 5(2):205–216CrossRefGoogle Scholar
  5. Awofolu OR, Mbolekwa Z, Mtshemla V, Fatoki OS (2005) Levels of trace metals in water and sediments from Tyume River and its effects on an irrigated farmland. Water S Afr 31(1):87–94Google Scholar
  6. Bhattarai S (2006) Spatial distribution of heavy metals in Louisiana sediments and study of factors impacting the concentration. Master of science Thesis. Louisiana State UniversityGoogle Scholar
  7. Birch G (2003) A scheme for assessing human impacts on coastal aquatic environments using sediments. In: Woodcoffe CD, Furness RA (eds) Coastal GIS 2003. Wollongong University Papers in Center for Maritime Policy, SidneyGoogle Scholar
  8. Çevik F, Göksu MZL, Derici OB, Fındık Ö (2009) An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses. Environ Monit Assess 152:309–317CrossRefGoogle Scholar
  9. Chunye L, Mengchang H, Yuxiang Z, Wei G, Zhifeng Y (2008) Distribution and contamination assessment of heavy metals in sediment of the Second Songhua River, China. Environ Monit Assess 137:329–342CrossRefGoogle Scholar
  10. Duffus J (2002) Heavy metals” a meaningless term? (IUPAC Technical Report). Pure Appl Chem Sci J IUPAC 74(5):793–807Google Scholar
  11. Duman F, Aksoy A, Demirezen D (2007) Seasonal variability of heavy metals in surface sediment of Lake Sapanca, Turkey. Environ Monit Assess 133:277–283CrossRefGoogle Scholar
  12. Environmental Protection Agency (1996) Method 3050B. Acid digestion of sediments, sludges, and soilsGoogle Scholar
  13. Environmental Protection Agency (2001) Sediment sampling guide and methodologies. Division of Surface Water, Environmental Protection Agency, OhioGoogle Scholar
  14. Environmental Protection Agency (2004) Method 9045C. pH electrometric measurementGoogle Scholar
  15. Golden N, Morrison L, Gibson P, Potito A, Zhang C (2015) Spatial patterns of metal contamination and magnetic susceptibility of soils at an urban bonfire site. Appl Geochem 52(2015):86–96CrossRefGoogle Scholar
  16. Gonzáles-Macías C, Schifter I, Lluch-Cota DB, Méndez-Rodríguez L, Hernández-Vázquez S (2006) Distribution, enrichment and accumulation of heavy metals in coastal sediments of Salina Cruz Bay, Mexico. Environ Monit Assess 118:211–230CrossRefGoogle Scholar
  17. González AI, Ávila-Pérez P, Tejeda-Vega S, Zarazúa-Ortega G, Longoria-Gándara LC (2006) Estudio del curso alto del río Lerma desde una perspectiva sustentable. In: Congreso nacional y reunión mesoamericana de manejo de cuencas Hidrográficas, MexicoGoogle Scholar
  18. Gutiérrez M, Alarcón-Herrera MT, Camacho LM (2009) Geographical distribution of arsenic in sediments within the río Conchos Basin, Mexico. Environ Geol 57:929–935CrossRefGoogle Scholar
  19. Hansen AM (2006a) Metales pesados en la cuenca del río Lerma. Atlas de la cuenca Lerma-Chapala, construyendo una visión conjunta. SEMARNAT, INE, UNAM-IE, Mexico, pp 92–98Google Scholar
  20. Hansen AM (2006b) Metales pesados en el lago de Chapala. Atlas de la cuenca Lerma-Chapala, construyendo una visión conjunta. SEMARNAT, INE, UNAM-IE, Mexico, pp 99–105Google Scholar
  21. Hansen AM, van Afferden M (2001) Toxic substances, sources, accumulation and dynamics. The Lerma-Chapala wathershed evaluation and management. Kluwer Academic/Plenium Press, New YorkGoogle Scholar
  22. Hodson M (2004) Heavy metals—geochemical bogey men? Environ Pollut 129(3):341–343CrossRefGoogle Scholar
  23. Hursthouse AS, Mattthews J, Figures J, Iqbal-Zahid P, Davies IM, Vaughan DH (2001) Chromium behavior in intertidal sediments and pore waters, R. Clyde, UK. Environ Geochem Health 23:253–259CrossRefGoogle Scholar
  24. Hursthouse AS, Mattthews J, Figures J, Iqbal-Zahid P, Davies IM, Vaughan DH (2003) Chromium in intertidal sediments of the Clyde, UK: potential for remobilization and bioaccumulation. Environ Geochem Health 25:171–203CrossRefGoogle Scholar
  25. Israde-Alcántara I, Segura GV, Abarca MN, Ector L, Cantoral UE, Mendoza CM (2011) Diatomeas del río Lerma, estimación de la calidad del agua de un río fuertemente contaminado. Research document. Accessed August 2013
  26. Jain CK, Malik DS, Yadav R (2007) Metal fractionation study on bed sediments of lake Nainital, Uttaranchal, India. Environ Monit Assess 130:129–139CrossRefGoogle Scholar
  27. Jie F, Xin H, Xiancong T, Hongxia Y, Xiaowei Z (2013) Risk and toxicity assessments of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake, China. Chemosphere 93(9):1887–1895CrossRefGoogle Scholar
  28. Khlifi R, Olmedo P, Gil F, Feki-Tounsi M, Hammami B, Rebai A, Hamza-Chaffai A (2014) Biomonitoring of cadmium, chromium, nickel and arsenic in general population living near mining and active industrial areas in Southern Tunisia. Environ Monit Assess 186:761–779CrossRefGoogle Scholar
  29. Korfali SI, Davies BE (2000) Total and extractable trace elements in Lebanese river sediments: dry season data. Environ Geochem Health 22:265–273CrossRefGoogle Scholar
  30. Kumar M, Ramanathan AL, Rahman MM, Naidu R (2016) Concentrations of inorganic arsenic in groundwater, agricultural soils and subsurface sediments from the middle Gangetic plain of Bihar, India. Sci Total Environ 573:1103–1114CrossRefGoogle Scholar
  31. Lau SSS, Chu LM (2000) The significance of sediment contamination in a coastal wetland, Hong Kong, China. Water Resour 34(2):379–386Google Scholar
  32. López-Hernández M, Ramos Espinosa MG, Carranza-Fraser J (2007) Análisis milimétrico para evaluar contaminación en el río Lerma y lago de Chapala, México. Hidrobiológica 17(1):17–30Google Scholar
  33. Loska K, Cebula J, Pelczar J, Wiechula D, Kwapulinski J (1997) Use of enrichment and contamination factors together with geoaccumulation indexes to evaluate the content of Cd, Cu, and Ni in the Bybnik water reservoir in Poland. Water Air Soil Pollut 93:347–365Google Scholar
  34. Lozano R, Bernal JP (2005) Characterization of a new set of eight geochemical reference materials for XRF mayor and trace element analysis. Rev Mex Cienc Geol 22:371–382Google Scholar
  35. Macedo-Miranda MG, Olguín MT (2007) Arsenic sorption by modified clinoptilolite–heulandites rich tuffs. J Incl Phenom Macrocycl Chem 59:131–142CrossRefGoogle Scholar
  36. Mohiuddin KM, Zakir HM, Otomo K, Sharmin S, Shikazono N (2010) Geochemical distribution of trace metal pollutants in water and sediments of downstream of an urban river. Int J Environ Sci Technol 7(1):17–28CrossRefGoogle Scholar
  37. Morton-Bermea O, Alfaro R, Lozano R, Cortés-Martínez R, Segovia N, Hernández-Álvarez E (2011) Trace metal contents in sediments from Cuitzeo Lake, Michoacan, Mexico. Fresenius Environ Bull 20:1–5Google Scholar
  38. Mudroch A, Azcue JM, Mudroch P (1997) Manual of physico-chemical analysis of aquatic sediments. CRC Lewis Publishers, New YorkGoogle Scholar
  39. Mwiganga M, Kansiime F (2005) Impact of Mpererwe Landfill in Kampala Uganda, on the surrounding environment. Phys Chem Earth 30(11–16):744–750CrossRefGoogle Scholar
  40. National Oceanic and Atmospheric Administration NOAA (2008) SQUIRT, screening quick reference tables. Accessed August 2013
  41. Nyangababo JT, Henry E, Omutange E (2005) Lead, cadmium, copper, manganese and zinc in wetland waters of Victoria Lake Basin, East Africa. Bull Environ Contam Toxicol 74(5):1003–1010CrossRefGoogle Scholar
  42. Okafor Ch, Opuene K (2007) Preliminary assessment of trace metals and polycyclic aromatic hydrocarbons in the sediments. Int J Environ Sci Technol 4(2):233–240CrossRefGoogle Scholar
  43. Orescanin V, Lulic S, Pavlovic G, Mikelic L (2004) Granulometric and chemical composition of the Sava River sediments upstream and downstream of the Krsko nuclear power plant. Environ Geol 46:605–613CrossRefGoogle Scholar
  44. Öztürk M, Özözen G, Minareci O, Minareci E (2009) Determination of heavy metals in fish, water and sediments of Avsar Dam Lake in Turkey, Iran. J Environ Health Sci Eng 6(2):73–80Google Scholar
  45. Pandey PK, Nair S, Ashish Bhui A, Pandey M (2004) Sediment contamination by arsenic in parts of central-east India and analytical studies on its mobilization. Curr Sci 86:190–197Google Scholar
  46. Pérez R (2001) Porcicultura y la contaminación del agua en La Piedad, Michoacán, Mexico. Rev Int Contam Ambient 17(1):5–13Google Scholar
  47. Price RE, Pichler T (2005) Distribution, speciation and bioavailability of arsenic in a shallow-water submarine hydrothermal system, Tutum Bay, Ambitle Island, PNG. Chem Geol 224:122–135CrossRefGoogle Scholar
  48. Puga S, Sosa M, Lebgue T, Quintana C, Campos A (2006) Heavy metals pollution in soils damaged by mining industry. Ecol Apl 5:149–155CrossRefGoogle Scholar
  49. Rodríguez-Barroso MR, Benhamou Y, El Moumni B, Coello D, García-Morales JL (2010) Concentration, enrichment and distribution of heavy metals in surface sediments of the Tangier bay, Morocco. Scientia Marina 74(S1):107–114CrossRefGoogle Scholar
  50. Rowell DL (1994) Soil science, methods and applications. Longman, LondonGoogle Scholar
  51. Sedeño-Díaz JE, López-López E (2007) Water quality in the río Lerma, Mexico: an overview of the last quarter of the twentieth century. Water Resour Manage 21:1797–1812CrossRefGoogle Scholar
  52. Shah MH, Iqbal J, Shaheen N, Khan N, Choudhary MA, Akhter G (2011) Assessment of background levels of trace metals in water and soil from a remote region of Himalaya. Environ Monit Assess. doi: 10.1007/s10661-011-2036-4 Google Scholar
  53. Singh VK, Singh KP, Mohan D (2005) Status of heavy metals in water and bed sediments of River Gomti—A tributary of the Ganga River, India. Environ Monit Assess 105:43–67CrossRefGoogle Scholar
  54. Smedley PL, Kinnigurgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568CrossRefGoogle Scholar
  55. Smith JW II, Tokach MD, Goodband RD, Nelssen JL, Richert BT (1997) Effects of the interrelationship between zinc oxide and copper sulfate on growth performance of early-weaned pigs. J Anim Sci 75:1861–1866CrossRefGoogle Scholar
  56. Trujillo-Cárdenas JL, Saucedo-Torres NP, Zárate del Valle PF, Ríos-Donato N, Mendizábal E, Gómez-Salazar S (2010) Speciation and sources of toxic metals in sediments of Lake Chapala, Mexico. J Mex Chem Soc 54(2):79–87Google Scholar
  57. Villalobos B (2011) Metales pesados y arsénico en la columna de agua y sediment en el Meandro del río Lerma, La Piedad, Michoacán. Tesis de maestría en ciencias biológicas, Universidad Michoacana de San Nicolás de HidalgoGoogle Scholar
  58. Villalobos-Castañeda B, Alfaro-Cuevas R, Cortés-Martínez R, Martínez-Miranda V, Márquez-Benavides L (2010) Distribution and partitioning of iron, zinc, and arsenic in surface sediments in the Grande River mouth to Cuitzeo Lake, Mexico. Environ Monit Assess 166:331–346CrossRefGoogle Scholar
  59. Welch AH, Lico MS, Hughes JL (1988) Arsenic in ground water of the western United States. Ground Water 26:333–347CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Benjamín Villalobos-Castañeda
    • 1
  • Raúl Cortés-Martínez
    • 2
  • Nuria Segovia
    • 3
  • Otoniel Buenrostro-Delgado
    • 4
  • Ofelia Morton-Bermea
    • 3
  • Ruth Alfaro-Cuevas-Villanueva
    • 1
    Email author
  1. 1.Facultad de Ingeniería QuímicaUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  2. 2.Facultad de Químico FarmacobiologíaUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  3. 3.Instituto de GeofisicaUniversidad Nacional Autónoma de México (UNAM)MexicoMexico
  4. 4.Instituto de Investigaciones Agropecuarias y ForestalesMoreliaMexico

Personalised recommendations