Environmental Earth Sciences

, 75:1435 | Cite as

Quantifying bias in hydromorphological monitoring: an evaluation of the German LAWA-OS method

  • Georg Lamberty
  • Thomas Zumbroich
  • Lars Ribbe
  • Maxime Souvignet
Thematic Issue
Part of the following topical collections:
  1. Water in Germany


Hydromorphological assessment methods as the on-site assessment of the German Working Group on water issues (LAWA-OS method) provide valuable information for a wide range of water management issues like water body assessment, deficit analysis and planning or monitoring of restoration projects. Considering these demands, the question about the assessment variability of such methods arises. Depending on varying aims, scales and approaches different methods may show contradictory assessment results. The objectives of this work are to quantify assessment deviations between different versions of the LAWA-OS method and to identify the causes of these deviations. The hypothesis is that procedural differences between versions act as deviation factors and lead to scoring discrepancies. A pairwise comparison between assessment results of two representative versions show that the LAWA-OS method is very robust against deviation factors on the overall score level. With increasing differentiation of hydromorphological characteristics on the main parameter and single parameter level, the assessment robustness decreases considerably. Particularly, differing numbers of parameters, differing reference scores and differing score aggregation procedures act as factors for substantial assessment deviations between versions. The work in hand provides scientifically based outputs in relation to the reliability, comparability and applicability of the LAWA-OS assessment results for river ecology issues. In this regard, the work in hand contributes to the quality control of the LAWA-OS method and provides valuable insights for practitioners and policy makers.


Fluvial geomorphology Environmental monitoring River ecology Assessment bias 



The study has been partly funded by the German Federal Ministry for Education and Research (Grant Number 033L162A) under the CLIENT programme (International Cooperations for Sustainable Innovations).


  1. Balestrini R, Cazzola M, Buffagni A (2004) Characterising hydromorphological features of selected Italian rivers: a comparative application of environmental indices. Hydrobiologia 516:365–379. doi: 10.1023/ CrossRefGoogle Scholar
  2. Belletti B, Rinaldi M, Buijse AD, Gurnell AM, Mosselman E (2015) A review of assessment methods for river hydromorphology. Environ Earth Sci 73(5):2079–2100. doi: 10.1007/s12665-014-3558-1 CrossRefGoogle Scholar
  3. Benjankar R, Koenig F, Tonina D (2013) Comparison of hydromorphological assessment methods: application to the Boise River, USA. J Hydrol 492:128–138. doi: 10.1016/j.jhydrol.2013.03.017 CrossRefGoogle Scholar
  4. Bizjak A, Brooke J, Bunzel K et al (2006) WFD and hydromorphological pressures—Technical report.
  5. Böhmer J, Rawer-Jost C, Zenker A, Meier C, Feld CK, Biss R, Hering D (2004) Assessing streams in Germany with benthic invertebrates: development of a multimetric invertebrate based assessment system. Limnologica 34:416–432. doi: 10.1016/s0075-9511(04)80010-0 CrossRefGoogle Scholar
  6. Cron N, Quick I, Zumbroich T (2015) Assessing and predicting the hydromorphological and ecological quality of federal waterways in Germany: development of a methodological framework. Hydrobiologia. doi: 10.1007/s10750-015-2484-x Google Scholar
  7. DIN (2005) Wasserbeschaffenheit—Anleitung zur Beurteilung hydromorphologischer Eigenschaften von Fließgewässern. EN 14614:2004 vol DIN EN 14614. DIN Deutsches Institut für Normung e. V. (German Institute for Standardization)Google Scholar
  8. DIN (2010) Wasserbeschaffenheit—Anleitung zur Beurteilung von Veränderungen der hydromorphologischen Eigenschaften von Fließgewässern. EN 15843:2010 vol DIN EN 15843. DIN Deutsches Institut für Normung e. V. (German Institute for Standardization)Google Scholar
  9. European Union (2000) Directive 2000/60/EC of the European Parliament and the Council of 23 October 2000 establishing a framework for Community action in the field of water. Off J Eur Commun 327:1–72Google Scholar
  10. Feld CK (2004) Identification and measure of hydromorphological degradation in Central European lowland streams. Hydrobiologia 516:69–90. doi: 10.1023/B:HYDR.0000025259.01054.f2 CrossRefGoogle Scholar
  11. Fernández D, Barquín J, Raven PJ (2011) A review of river habitat characterisation methods: indices vs. characterisation protocols. Limnetica 30:217–234Google Scholar
  12. Gellert G, Behrens S, Raschke M (2012) The return of degraded stream ecosystems by using positive impacts from near-natural sections: a new practical guide for restorations. Water Environ J 26:415–421. doi: 10.1111/j.1747-6593.2012.00307.x CrossRefGoogle Scholar
  13. Gellert G, Pottgiesser T, Euler T (2014) Assessment of the structural quality of streams in Germany—basic description and current status. Environ Monit Assess 186:3365–3378. doi: 10.1007/s10661-014-3623-y CrossRefGoogle Scholar
  14. Gurnell AM, Rinaldi M, Buijse AD, Brierley G, Piégay H (2016) Hydromorphological frameworks: emerging trajectories. Aquat Sci 78(1):135–138. doi: 10.1007/s00027-015-0436-1 CrossRefGoogle Scholar
  15. Haase P, Hering D, Jähnig SC, Lorenz AW, Sundermann A (2013) The impact of hydromorphological restoration on river ecological status: a comparison of fish, benthic invertebrates, and macrophytes. Hydrobiologia 704:475–488. doi: 10.1007/s10750-012-1255-1 CrossRefGoogle Scholar
  16. Hering D, Meier C, Rawer-Jost C, Feld CK, Biss R, Zenker A, Sundermann A, Lohse S, Böhmer J (2004) Assessing streams in Germany with benthic invertebrates: selection of candidate metrics. Limnologica 34:398–415. doi: 10.1016/s0075-9511(04)80009-4 CrossRefGoogle Scholar
  17. Hering D, Borja A, Carstensen J, Carvalho L, Elliott M, Feld CK, Heiskanen AS, Johnson RK, Moe J, Pont D, Sohlheim AL, de Bund WV (2010) The European Water Framework Directive at the age of 10: a critical review of the achievements with recommendations for the future. Sci Total Environ 408:4007–4019. doi: 10.1016/j.scitotenv.2010.05.031 CrossRefGoogle Scholar
  18. Kail J, Hering D (2009) The influence of adjacent stream reaches on the local ecological status of central european mountain streams. River Res Appl 25:537–550. doi: 10.1002/rra.1238 CrossRefGoogle Scholar
  19. Kail J, Jähnig SC, Hering D (2009) Relation between floodplain land use and river hydromorphology on different spatial scales: a case study from two lower-mountain catchments in Germany. Fundam Appl Limnol 174:63–73. doi: 10.1127/1863-9135/2009/0174-0063 CrossRefGoogle Scholar
  20. Kamp U, Binder W, Hölzl K (2007) River habitat monitoring and assessment in Germany. Enviro Monit Assess 127:209–226. doi: 10.1007/s10661-006-9274-x CrossRefGoogle Scholar
  21. König F (2011) Methode zur hydromorphologischen und soziokulturellen Bewertung urbaner Fließgewässer. Dissertation, Karlsruhe Institute of Technology (KIT)Google Scholar
  22. Langhans SD, Lienert J, Schuwirth N, Reichert P (2013) How to make river assessments comparable: a demonstration for hydromorphology. Ecol Indic 32:264–275. doi: 10.1016/j.envsoft.2013.01.017 CrossRefGoogle Scholar
  23. LANUV (2012) Gewässerstruktur in Nordrhein-Westfalen: Kartieranleitung für die kleinen bis großen Fließgewässer—LANUV Arbeitsblatt Nr. 18. Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen (ed), RecklinghausenGoogle Scholar
  24. LAWA (2000) Gewässerstrukturgütekartierung in der Bundesrepublik Deutschland: Verfahren für kleine und mittelgroße Fließgewässer—Empfehlung. Länderarbeitsgemeinschaft Wasser LAWA (ed), SchwerinGoogle Scholar
  25. LAWA (2012) Unterstützende Bewertungsverfahren—Ableitung von Bewertungsregeln für die Durchgängigkeit, die Morphologie und den Wasserhaushalt zur Berichterstattung in den reporting sheets. LAWA-Arbeitsprogramm Flussgebietsbewirtschaftung, Produktdatenblatt 2.2.6, Ständiger Ausschuss „Oberirdische Gewässer und Küstengewässer LAWA-AO, Länderarbeitsgemeinschaft Wasser LAWAGoogle Scholar
  26. LfU—Bayerisches Landesamt für Umwelt (2016) Erfassung und Bewertung der Gewässerstruktur (Bayerisches Verfahren). Entwurf Version 5, Stand Mai 2016 (unpublished)Google Scholar
  27. LIKI—Länderinitative Kernindikatoren (2016) Kernindikator B9 Gewässerstruktur—Grad der Veränderung der Gewässerstruktur. Accessed 3 Ocotber 2016
  28. Löffler E, Kinsinger C (2006) Ermittlung und Bewertung der Gewässerentwicklungsfähigkeit saarländischer Fließgewässer als Grundlage für die Erstellung von Bewirtschaftungsplänen zur Erreichung des guten Zustands nach Vorgabe der EG-WRRL (unpublished)Google Scholar
  29. LUA—Landesamt für Umwelt- und Arbeitsschutz des Saarlandes (2015) Verfahren zur Erfassung und Bewertung der Gewässerentwicklungsfähigkeit (GEF-Verfahren)—Kurzanleitung. Accessed 3 Oct 2016
  30. LUBW (2010) Gewässerstrukturkartierung in Baden-Württemberg: Feinverfahren. Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg—LUBW (ed), KarlsruheGoogle Scholar
  31. Matoušková M, Dvořák M (2011) Assessment of physical habitat modification in the Bílina River Basin. Limnetica 30(2):293–306Google Scholar
  32. Meier G (2016) Bewertungsrobustheit der Gewässerstrukturkartierung nach dem Deutschen Vor-Ort-Verfahren (Rating robustness of hydromorphological assessment according to the German on-site method). Dissertation, University of BonnGoogle Scholar
  33. Meier G, Zumbroich T, Roehrig J, Souvignet M (2012) Application of the radiating effect concept to implement measures stipulated by the European Water Framework Directive. Water Sci Technol 66:2793–2799. doi: 10.2166/wst.2012.532 CrossRefGoogle Scholar
  34. Meier G, Zumbroich T, Roehrig J (2013) Hydromorphological assessment as a tool for river basin management: the German field survey method. J Nat Resour Dev 3:14–26. doi: 10.5027/jnrd.v3i0.02 Google Scholar
  35. Naura M, Clark MJ, Sear DA, Atkinson PM, Hornby DD, Kemp P, England J, Peirson G, Bromley C, Carter MG (2016) Mapping habitat indices across river networks using spatial statistical modelling of River Habitat Survey data. Ecol Indic 66:20–29. doi: 10.1016/j.ecolind.2016.01.019 CrossRefGoogle Scholar
  36. Pardo I, Gómez-Rodríguez C, Wasson JG, Owen R, van de Bund W, Kelly M, Bennett C, Birk S, Buffagni A, Erba S, Mengin N, Murray-Bligh J, Ofenböeck G (2012) The European reference condition concept: a scientific and technical approach to identify minimally-impacted river ecosystems. Sci Total Environ 420:33–42. doi: 10.1016/j.scitotenv.2012.01.026 CrossRefGoogle Scholar
  37. Poppe M, Kail J, Aroviita J, Stelmaszczyk M, Giełczewski M, Muhar S (2016) Assessing restoration effects on hydromorphology in European mid-sized rivers by key hydromorphological parameters. Hydrobiologia 769(1):21–40. doi: 10.1007/s10750-015-2468-x CrossRefGoogle Scholar
  38. Pottgiesser T, Sommerhäuser M (2008) Beschreibung und Bewertung der deutschen Fließgewässertypen—Steckbriefe und Anhang. German Environmental Agency (UBA)Google Scholar
  39. Raven PJ, Holmes NTH, Charrier P, Dawson FH, Naura M, Boon PJ (2002) Towards a harmonized approach for hydromorphological assessment of rivers in Europe: a qualitative comparison of three survey methods. Aquat Conserv Mar Freshw Ecosyst 12:405–424. doi: 10.1002/aqc.536 CrossRefGoogle Scholar
  40. Sípek V, Matousková M, Dvorák M (2010) Comparative analysis of selected hydromorphological assessment methods. Environ Monit Assess 169:309–319. doi: 10.1007/s10661-009-1172-6 CrossRefGoogle Scholar
  41. Ward TA, Tate KW, Atwill ER, Lile DF, Lancaster DL, McDougald N, Barry S, Ingram RS, George HA, Jensen W, Frost WE, Phillips R, Markegard GG, Larson S (2003) A comparison of three visual assessments for riparian and stream health. J Soil Water Conserv 58:83–88Google Scholar
  42. Weiß A, Matouskova M, Matschullat J (2008) Hydromorphological assessment within the EU-Water Framework Directive-trans-boundary cooperation and application to different water basins. Hydrobiologia 603:53–72. doi: 10.1007/s10750-007-9247-2 CrossRefGoogle Scholar
  43. Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1:80–83. doi: 10.2307/3001968 CrossRefGoogle Scholar
  44. Zumbroich T (2008) Strukturkartierung—Multifunktionstalent ohne Grenzen? (Structure mapping—All-rounder without limits?). Wasser und Abfall 10:32–36Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.ITTCologne University of Applied SciencesCologneGermany
  2. 2.Planungsbüro ZumbroichBonnGermany
  3. 3.Institute of Geography, Faculty of Mathematical and Natural SciencesUniversity of BonnBonnGermany
  4. 4.Institute for Environment and Human SecurityUnited Nations UniversityBonnGermany

Personalised recommendations