Relationship between irrigation water demand and yield of selected crops in Germany between 1902 and 2010: a modeling study

Abstract

The demand for irrigation water is increasing worldwide, including regions in Germany with low precipitation and water-demanding crops. In this study, history of irrigation water demand (IWD) in the German nation states in relation to the yield of four crops (1) potato, (2) spring barley, (3) oat, and (4) winter wheat, during droughts between 1902 and 2010 was analyzed. The difficulties caused by the shifting borders of the German nation state over the past century were dealt with by dividing the data for the region into four time periods for the analysis. Low precipitation during droughts influenced crop yield in the German nation states. Analyses of droughts resulted in no clear conclusions; however, it appeared that after 1950, German nation states droughts had a negative influence on the yield of the four crops despite the important role irrigation played in German agriculture since 1960 in the German nation state. Lower yield because of weather conditions since 1950 was primarily attributable to the high-yield potential of improved crop varieties, for which yield potential is only reached under optimal growing conditions. In this study, the analysis of the modeled historical IWD in agriculture revealed the urgency with which the German crop production systems must adapt to extremes in a changing climate not only by improving irrigation systems via irrigation scheduling but also by greater higher diversification of crops.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Alcamo JM, Döll P, Henrichs T, Kaspar F, Lehner B, Rösch T, Siebert S (2003) Development and testing of the WaterGAP2 global model of water use and availability. Hydrol Sci J 48:317–337. doi:10.1623/hysj.48.3.317.45290

    Article  Google Scholar 

  2. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper 56. FAO, Rome, Italy.http://www.fao.org/docrep/X0490E/X0490E00.htm. Accessed 31 Oct 2016  

    Google Scholar 

  3. ALB Bayern e.V. (2016) App ALB Bayern. ALB Bayern e.V. http://www.alb-bayern.de/De/Themen/Aussenwirtschaft/BodenwasserModell/beregnung-bewaesserung-bodenwasser_BewaesserungsApp.html. Accessed 16 Oct 16

  4. Aus der Beek T, Flörke M, Lapola DM, Schaldach R, Voß F, Teichert E (2010) Modelling historical and current irrigation water demand on the continental scale. Eur Adv Geosci 27:79–85. doi:10.5194/adgeo-27-79-2010

    Article  Google Scholar 

  5. Bennett J (2003) Opportunities for increasing water productivity of CGIAR crops through plant breeding and molecular biology. In: Kijne J, Barker R, Molden M (eds) Water productivity in agriculture: limits and opportunities for improvement. CABI, Sri Lanka

    Google Scholar 

  6. BGR (2007) Soil Map of Germany 1:1,000,000 (BÜK1000). Federal Institute for Geosciences and Natural Resources, Hannover

    Google Scholar 

  7. BKG (2011) Bundesamt für Kartographie und Geodäsie, Germany VG 2500 Verwaltungsgebiete (Ebenen) 1:2.500.000. Version January 2009. Frankfurt am Main

  8. Braden H (1985) Ein Energiehaushalts- und Verdunstungsmodell fuer Wasser und Stoffhaushaltsuntersuchungen landwirtschaftlich genutzter Einzugsgebiete. Mitt Dtsch Bodenkdl Ges 1985(42):294–299

    Google Scholar 

  9. Destatis (2004) Statistik der Wasserversorgung in der Landwirtschaft 2002. Statistisches Bundesamt Federal Statistical Office. Wiesbaden, Germany. https://www.destatis.de/DE/Publikationen/Thematisch/UmweltstatistischeErhebungen/Wasserwirtschaft/WasserversorgungLandwirtschaft.html. Accessed 16 Oct 2016

  10. Destatis (2010) Census of agriculture-main survey. In: Genesis-Online (ed) EVAS 41141-0001. Statistisches Bundesamt Federal Statistical Office. Wiesbaden, Germany. https://www-genesis.destatis.de/genesis/online/data;jsessionid=D94AC907BB5573605A33BA2CD69E31E6.tomcat_GO_1_3?operation=begriffsRecherche&suchanweisung_language=en&suchanweisung=41141-0001. Accessed 16 Oct 2016

  11. Destatis (2013a) Bewässerung in landwirtschaftlichen Betrieben/Agrarstrukturerhebung Irrigation in agriculture-main survey. In: Statistisches Bundesamt W (ed) 5411205139004. Federal Statistical Office. Wiesbaden, Germany. https://www.destatis.de/DE/Publikationen/Thematisch/LandForstwirtschaft/Betriebe/BetriebeBewaesserung.html. Accessed 16 Oct 2016

  12. Destatis (2013b) In: Federal Statistical Office, Germany (ed) Statistical Yearbook 1953–1990 for the Federal Republic of Germany, DigiZeitschriften e.V.. Göttingen, Germany

  13. Destatis (2013c) In: Federal Statistical Office, Germany (ed) Statistical Yearbook 1991–2005 for the Federal Republic of Germany, DigiZeitschriften e.V., Göttingen, Germany

  14. Destatis (2013d) In: Federal Statistical Office, Germany (ed) Statistical Yearbook 2006–2013 for the Federal Republic of Germany. Statistisches Bundesamt Federal Statistical Office. Wiesbaden, Germany

  15. Destatis (2015) Environmental-economic accounting. Federal Statistical Office. https://www.destatis.de/EN/FactsFigures/NationalEconomyEnvironment/Environment/EnvironmentalEconomicAccounting/MaterialEnergyFlows/Tables/WithdrawalWater.html. Accessed 16 Nov 2016

  16. Deutscher Bundestag (2008) German Strategy for Adaptation to Climate Change—Deutsche Anpassungsstrategie an den Klimawandel. Bundestagsdrucksache16/11595. Berlin

  17. Drastig, K, Prochnow A, Brunsch, R (2011) Wassermanagement in der Landwirtschaft. Berlin-Brandenburgische Akademie der Wissenschaften, Diskussionspapier, 3

  18. Drastig K, Prochnow A, Kraatz S, Libra J, Krauß M, Döring K et al (2012) Modeling the water demand on farms. Adv Geosci 10:1–6. doi:10.5194/adgeo-32-9-2012

    Google Scholar 

  19. Drastig K, Prochnow A, Libra J, Koch H, Rolinski S (2016a) Irrigation water demand of selected agricultural crops in Germany between 1902 and 2010. Sci Total Environ 569:1299–1314. doi:10.1016/j.scitotenv.2016.06.206

    Article  Google Scholar 

  20. Drastig K, Palhares JCP, Karbach K, Prochnow A (2016b) Farm water productivity in broiler production: case studies in Brazil. J Clean Prod 135:9–19. doi:10.1016/j.jclepro.2016.06.052

    Article  Google Scholar 

  21. Federal Statistical Office and the statistical Offices of the Länder (2011) Agrarstrukturen in Deutschland—Einheit in Vielfalt. Federal Statistical Office and the statistical Offices of the Länder. https://www.destatis.de/DE/Publikationen/Thematisch/LandForstwirtschaft/Landwirtschaftzaehlung/AgrarstruktureninDeutschland.html. Accessed 16 Nov 2016

  22. Fischer G, F, Nachtergaele F, Prieler S, van Velthuizen HT, Verelst L, Wiberg D (2009) FAO/IIASA/ISRIC/ISSCAS/JRC harmonized world soil database (version 1.1). In: FAO (ed) IIASA, Laxenburg

  23. FVF (2008) Basisinformationen zur Beregnung. Fachverband Feldberegnung in Niedersachsen e.V

  24. Garcia-Garizabalm I, Causape J, Abrahao R (2014) Changes in irrigation management and quantity and quality of drainage water in a traditional irrigated land. Environ Earth Sci 72:233–242. doi:10.1007/s12665-013-2949-z

    Article  Google Scholar 

  25. Gerstengarbe FW, Badeck F, Hattermann F, Krysanova V, Lahmer W, Lasch P et al (2003) Studie zur klimatischen Entwicklung im Land Brandenburg bis 2055 und deren Auswirkungen auf den Wasserhaushalt, die Forst- und Landwirtschaft sowie Ableitung erster Perspektiven. PIK-Report. Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany

  26. Görmann H, Bender A, Bolte A, Dirksmeyer W, Englert H, Feil J-H et al (2015) Agrarrelevante Extremwetterlagen und Möglichkeiten von Risikomanagementsystemen. Thünen Report

  27. Hanke B (1986) Taschenbuch der Bewässerung, Wasser in der Pflanzenproduktion. VEB Deutscher Landwirtschaftsverlag, Berlin

    Google Scholar 

  28. Heidt (2009) Auswirkungen des Klimawandels auf die potentielle Beregnungsbedürftigkeit Nordost-Niedersachsens. Geoberichte 13:60–67

    Google Scholar 

  29. Hubatsch, W, Klein, T (1975) Grundriß der deutschen Verwaltungsgeschichte. Marburg

  30. Igbadun HE, Tarimo AKPR, Salim BA, Mahoo HF (2007) Evaluation of selected crop water production functions for an irrigated maize crop. Agric Water Manag 94:1–10. doi:10.1016/j.agwat.2007.07.006

    Article  Google Scholar 

  31. Krauss M, Kraatz S, Drastig K, Prochnow A (2015) The influence of dairy management strategies on water productivity of milk production. Agric Water Manag 147:175–186. doi:10.1016/j.agwat.2014.07.015

    Article  Google Scholar 

  32. Kunz A, Dietze L (2007) HGIS Germany Institut fuer Europaeische Geschichte (Mainz, Rhineland-Palatinate, Germany). www.hgis-germany.de. Accessed 15 May 2015

  33. Kutschera L, Lichtenegger E, Sobotik M (2009) Wurzelatlas der Kulturpflanzen gemäßigter Gebiete mit Arten des Feldgemüsebaues. DLG-Verlag, Frankfurt am Main

    Google Scholar 

  34. Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87. doi:10.1038/nature16467

    Article  Google Scholar 

  35. Liu T-M, Wang Y, Zou W, Sun D-F, Lang LB, Cao W-X (2010) Simulation model of barley leaf area index. Chin J Appl Ecol 21:121–128

    Google Scholar 

  36. LUA (2004) Leitfaden zur Renaturierung von Feuchtgebieten in Brandenburg. Studien und Tagungsberichte des Landesumweltamtes 50. Landesumweltamt Brandenburg, Potsdam. http://www.lugv.brandenburg.de/cms/media.php/lbm1.a.3310.de/lua_bd50.pdf. Accessed 16 Oct 2016

  37. Michel R, Sourell H (2014) Bewässerung in der Landwirtschaft. Erling-Verlag, Clenze

    Google Scholar 

  38. MPIDR, CGG (2011) MPIDR (Max Planck Institute for Demographic Research) and CGG (Chair for Geodesy and Geoinformatics, Population History GIS Collection (partly based on Bundesamt für Kartographie und Geodäsie 2011) Rostock

  39. Munich RE (2015) Topics GEO natural catastrophes 2014—analyses, assessments, positions. https://www.munichre.com/site/touchpublications/get/documents_E1018449711/mr/assetpool.shared/Documents/5_Touch/_Publications/302-08606_en.pdf. Accessed 31 Oct 2016

  40. Österle H (2001) Reconstruction of daily global radiation for past years for use in agricultural models. Phys Chem Earth Part B 2001(26):253–256. doi:10.1016/S1464-1909(00)00248-3

    Article  Google Scholar 

  41. Österle H, Gerstengarbe F-W, Werner PC (2006) Qualitätsprüfung, Ergänzung und Homogenisierung der täglichen Datentreihen in Deutschland, 1951–2003: Ein neuer Datensatz. 7. Deutsche Klimatagung. Klimatrends: Vergangenheit und Zukunft. Meteorologisches Institut der Ludwig-Maximilians-Universität, München

  42. Paschold P-J, Kleber J, Mayer N (2002) Geisenheim irrigation scheduling 2002. Zeitschrift für Bewässerungswirtschaft 37:5–15

    Google Scholar 

  43. Prochnow A, Drastig K, Klauss H, Berg W (2012) Water use indicators at farm scale: methodology and case study. Food Energy Secur 1:29–46. doi:10.1002/fes3.6

    Article  Google Scholar 

  44. Riediger J, Breckling B, Nuske RS, Schröder W (2014) Will climate change increase irrigation requirements in agriculture of Central Europe? A simulation study for Northern Germany. Environ Sci Eur 26:18. doi:10.1186/s12302-014-0018-1

    Article  Google Scholar 

  45. Rosegrant MW, Cai X, Cline SA (2002) World water and food to 2025: dealing with scarcity. IFPRI, Washington

    Google Scholar 

  46. Roth D, Eggers T, Seeßelberg F, Albrecht M (1995) Status of sprinkler irrigation in Germany—an analysis of the Federal Sprinkler Irrigation Association. Zeitschrift für Bewässerungswirtschaft 2(95):113–120

    Google Scholar 

  47. Särekanno M, Kadaja J, Kotkas K, Rosenberg V, Vasar V, Ojarand A (2010) Dependence of leaf area index on different multiplication methods of potato meristem plants grown under field conditions. Acta Agric Scand Sect B 60:1–9. doi:10.1080/09064710802513760

    Google Scholar 

  48. Schaldach R, Koch J, der Beek TA, Kynast E, Flörke M (2012) Current and future irrigation water requirements in pan-Europe: an integrated analysis of socio-economic and climate scenarios. Glob Planet Chang 94–95:33–45

    Article  Google Scholar 

  49. Schirach F, Wenkel KO, Germar R (1988) Sprinkling recommendations for practice using the systems IBSB-2 and BEREST. Gartenbau 35:199–202

    Google Scholar 

  50. Schmidt T, Osterburg B (2013) Berichtsmodul ‘Landwirtschaft und Umwelt’ in den Umweltökonomischen Gesamtrechnungen https://www.destatis.de/DE/Publikationen/Thematisch/UmweltoekonomischeGesamtrechnungen/SchmidtOsterburg2004.pdf?__blob=publicationFile. Accessed 16 Oct 16

  51. Schonnop G (1955) Der gegenwärtige Stand der Feldberegnung. Landtechnik 10:200–202

    Google Scholar 

  52. Schönwiese C-D, Janoschitz R (2008) Klima-Trendatlas Deutschland 1901–2000 (Climate Trend Atlas Germany 1901–2000). Second ed. Universitätsbibliothek Johann Christian Senckenberg, Frankfurt/Main. https://www.uni-frankfurt.de/45447808/Inst_Ber_4_21.pdf. Accessed 16 Oct 16

  53. Scurlock JMO, Asner GP, Gower ST (2001) Global leaf area index data from field measurements, 1932–2000. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge

    Google Scholar 

  54. Shiklomanov IA (2000) Appraisal and assessment of world water resources. Water Int 25:11–32. doi:10.1080/02508060008686794

    Article  Google Scholar 

  55. Steidl J, Schuler J, Schubert U, Dietrich O, Zander P (2015) Expansion of an existing water management model for the analysis of opportunities and impacts of agricultural irrigation under climate change conditions. Water 7:6351–6377. doi:10.3390/w7116351

    Article  Google Scholar 

  56. StRA (2013) In: Statistisches Reichsamt (ed) Statistical Yearbook 1919–1943 for the German Nation State. DigiZeitschriften e.V., Göttingen, Germany, http://www.digizeitschriften.de/dms/toc/?PID=PPN514401303. Accessed 16 Oct 16

  57. Supit I, van Diepen CA, de Wit AJW, Wolf J, Kabat P, Baruth B et al (2012) Assessing climate change effects on European crop yields using the Crop Growth Monitoring System and a weather generator. Agric For Meteorol 164:96–111. doi:10.1016/j.agrformet.2012.05.005

    Article  Google Scholar 

  58. SZS (2013). In: Staatliche Zentralverwaltung für Statistik (ed) Statistical Yearbook 1956–1991 for the Democratic Republic of Germany. DigiZeitschriften e.V., Göttingen, Germany. http://www.digizeitschriften.de/dms/toc/?PID=PPN514402644. Accessed 16 Oct 2016

  59. Trömel S, Schönwiese CD (2008) Robust trend estimation of observed German precipitation. Theor Appl Climatol 93:107–115. doi:10.1007/s00704-007-0341-1

    Article  Google Scholar 

  60. UBA (2016) Rahmenbedingungen für die umweltgerechte Nutzung von behandeltem Abwasser zur landwirtschaftlichen Bewässerung. Guidelines for the environmentally sound agricultural water reuse. Umweltbundesamt. https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/texte_34_2016_rahmenbedingungen_fuer_die_umweltgerechte_nutzung_von_behandeltem_abwasser_0.pdf. Accessed 16 Oct 2016

  61. von Hoyningen-Huene J (1983) Die Interzeption des Niederschlages in landwirtschaftlichen Pflanzenbeständen. DVWK Schriften 57:1–53

    Google Scholar 

  62. WM (2008) Klimaschutz und Folgen des Klimawandels in Mecklenburg-Vorpommern. Studie aufgrund des Landtagsbeschlusses vom 29.03.2007. http://www.bauernverband-uer.de/uploads/media/Studie_Klimawandel_MV_06_1_.05.08.pdf. Accessed 16 Oct 2016

  63. WMO (2006) Drought monitoring and early warning: concepts, progress and future challenges. Technical report 1006 World Meteorological Organisation

  64. Wolff P (1978) Bewässerungstechnik in der Evolution. Zeitschrift für Bewässerungswirtschaft 13:3–20

    Google Scholar 

  65. Wolff P (2010) German pioneers of sprinkler irrigation within the 20. Century. Zeitschrift für Bewässerungswirtschaft 45:205–234

    Google Scholar 

  66. Wriedt G, Van der Veld M, Aloe A, Bouraoui F (2009) Estimating irrigation water requirements in Europe. J Hydrol 373:527–544. doi:10.1016/j.jhydrol.2009.05.018

    Article  Google Scholar 

  67. Zink M, Samaniego L, Kumar R, Thober S, Mai J, Schafer D et al (2016) The German drought monitor. Environ Res Lett. doi:10.1088/1748-9326/11/7/074002

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Leibniz Competition (formerly SAW Procedure) within the Leibniz Association, Grant Number SAW-2011-ATB-5. The authors gratefully acknowledge the support from two anonymous reviewers.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Katrin Drastig.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “Water in Germany”, guest edited by Daniel Karthe, Peter Chifflard, Bernd Cyffka, Lucas Menzel, Heribert Nacken, Uta Raeder, Mario Sommerhäuser and Markus Weiler.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Drastig, K., Libra, J., Kraatz, S. et al. Relationship between irrigation water demand and yield of selected crops in Germany between 1902 and 2010: a modeling study. Environ Earth Sci 75, 1427 (2016). https://doi.org/10.1007/s12665-016-6235-8

Download citation

Keywords

  • Germany
  • Irrigation water demand
  • AgroHyd Farmmodel
  • Agricultural yield
  • Potato
  • Wheat
  • Barley
  • Oat