Skip to main content

Advertisement

Log in

Study on the hydrochemical characteristics of groundwater along the Taklimakan Desert Highway

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Groundwater is the only water source of the shelterbelt along the Taklimakan Desert Highway in northwestern China. Understanding the hydrochemical zoning characteristics, material source, and hydrochemical processes of this desert groundwater is important for rational groundwater exploitation. Meanwhile, determining the location of the dividing boundary, which divides the influence ranges of the Tarim river and the Kunlun mountain river system on the desert groundwater, is meaningful for the local desert hydrogeological study. For these objectives, 105 groundwater samples were investigated to obtain analytical data of groundwater chemistry, and ionic relations methods including ratio graphs and Gibbs plots were applied in the chemical analysis for these data. Chemical analysis shows that desert groundwater is characterized by Cl·SO4–Na·Mg and Cl·SO4–Na types with total dissolved solid (TDS) of 2.80–29.77 g/L. Spatial variation patterns of major ions, TDS, and SO4 2−/Cl molar ratio reveal clear four hydrochemical zones along the groundwater flow direction on one hand; on the other hand, these variation patterns also indicate that the boundary dividing the influence ranges of the Tarim river and the Kunlun mountain river system is the approximate location of Well 030. Ratio graphs show that the average molar ratios (Na+ + K+)/Cl (1.05) and (Ca2+ + Mg2+)/SO4 2− (0.93) are approximately equal to 1, and there is an approximately linear correlation between (Na+ + K+) and SO4 2−. These results reveal that the groundwater composition is mainly influenced by dissolution of evaporate (halite, gypsum, and mirabilite). Moreover, ionic relations demonstrate that the dominating hydrochemical processes in the groundwater evolution are evaporation and cations exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Banat KM, Howari FM, Abdullah MB (2006) Mineralogy and hydrochemical characteristics of the late marshes and swamps of Hor Al Hammar, Southern Iraq. J Arid Environ 65(3):400–419. doi:10.1016/j.jaridenv.2005.08.004

    Article  Google Scholar 

  • Bo Y, Liu C, Jiao P, Chen Y, Cao Y (2013) Hydrochemical characteristics and controlling factors for waters’ chemical composition in the Tarim Basin, Western China. Chemie der Erde Geochem 73(3):343–356. doi:10.1016/j.chemer.2013.06.003

    Article  Google Scholar 

  • Carol E, Kruse E, Mas-pla J (2009) Hydrochemical and isotopical evidence of ground water salinization processes on the coastal plain of Samborombón Bay, Argentina. J Hydrol 365(3–4):335–345. doi:10.1016/j.jhydrol.2008.11.041

    Article  Google Scholar 

  • Charfi S, Zouari K, Feki S, Mami E (2013) Study of variation in groundwater quality in a coastal aquifer in north-eastern Tunisia using multivariate factor analysis. Quat Int 302:199–209. doi:10.1016/j.quaint.2012.11.002

    Article  Google Scholar 

  • Chen YJ, Chen YN, Liu JZ, Li WH, Li J, Xu CC (2005) Dynamical variations in groundwater chemistry influenced by intermittent water delivery at the lower reaches of the Tarim River. J Geogr Sci 15(1):13–19. doi:10.1007/BF02873102

    Article  Google Scholar 

  • Chen YN, Zilliacus H, Li WH, Zhang HF, Chen YP (2006) Ground-water level affects plant species diversity along the lower reaches of the Tarim river, Western China. J Arid Environ 66(2):231–246. doi:10.1016/j.jaridenv.2005.11.009

    Article  Google Scholar 

  • Chen YN, Xu CC, Chen YP, Liu YB, Li WH (2013) Progress, challenges and prospects of eco-hydrological studies in the Tarim River Basin of Xinjiang, China. Environ Manag 51(1):138–153. doi:10.1007/s00267-012-9823-8

    Article  Google Scholar 

  • Cirelli AF, Miretzky P (2004) Ionic relations: a tool for studying hydrogeochemical processes in Pampean shallow lakes (Buenos Aires, Argentina). Quat Int 114(1):113–121. doi:10.1016/S1040-6182(03)00046-6

    Article  Google Scholar 

  • Cooper RJ, Wadham JL, Tranter M, Hodgkins R, Peters NE (2002) Groundwater hydrochemistry in the active layer of the proglacial zone, Finsterwalderbreen, Svalbard. J Hydrol 269(3–4):208–223. doi:10.1016/S0022-1694(02)00279-2

    Article  Google Scholar 

  • Dong Z, Wang X, Chen G (2000) Monitoring sand dune advance in the Taklimakan Desert. Geomorphology 35(3–4):219–231. doi:10.1016/S0169-555X(00)00039-8

    Article  Google Scholar 

  • Du HL, Ma ZW, Xiong JG, Gao QZ (2005) Research and evaluation of the regional water resources in Tarim Desert Highway and Desert Oilfield areas. China Ocean Press, Beijing (in Chinese)

    Google Scholar 

  • Fan JL, Xu XW, Lei JQ, Zhao JF, Li SY, Wang HF, Zhang JG, Zhou HW (2008) The temporal and spatial fluctuation of the groundwater level along the Tarim Desert Highway. Chin Sci Bull 53(2):53–62. doi:10.1007/s11434-008-6005-4

    Google Scholar 

  • Fisher RS, Mullican WF III (1997) Hydrochemical evolution of sodium–sulfate and sodium–chloride groundwater beneath the northern Chihuahuan Desert, Trans-Pecos, Texas, USA. Hydrogeol J 5(2):4–16. doi:10.1007/s100400050102

    Article  Google Scholar 

  • Garcia GM, del V. Hidalgo M, Blesa MA, (2001) Geochemistry of groundwater in the alluvial plain of Tucuman province, Argentina. Hydrogeol J 9(6):597–610. doi:10.1007/s10040-001-0166-4

    Article  Google Scholar 

  • Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170(3962):1088–1090. doi:10.1126/science.170.3962.1088

    Article  Google Scholar 

  • Han W, Cao L, Yimit H, Xu XW, Zhang JG (2012) Optimization of the saline groundwater irrigation system along the Tarim Desert Highway Ecological Shelterbelt Project in China. Ecol Eng 40:108–112. doi:10.1016/j.ecoleng.2011.12.009

    Article  Google Scholar 

  • Huang T, Pang Z (2010) Changes in groundwater induced by water diversion in the Lower Tarim River, Xinjiang Uygur, NW China: evidence from environmental isotopes and water chemistry. J Hydrol 387(3–4):188–201. doi:10.1016/j.jhydrol.2010.04.007

    Article  Google Scholar 

  • Li WP, Jiao PX, Zhao ZX (1995) Hydrochemical and isotopic characteristics of groundwater in the hinterland of the Taklimakan Desert. Hydrogeol Eng Geol 4:22–24+54. doi:10.16030/j.cnki.issn.1000-3665.1995.04.009 (in Chinese)

    Google Scholar 

  • Li C, Lei J, Zhao Y, Xu X, Li S (2015) Effect of saline water irrigation on soil development and plant growth in the Taklimakan Desert Highway shelterbelt. Soil Tillage Res 146:99–107. doi:10.1016/j.still.2014.03.013

    Article  Google Scholar 

  • Mejri HE, Moussaa AB, Zouari K (2014) The use of hydrochemical and environmental isotopic tracers to understand the functioning of the aquifer system in the Bou Hafna and Haffouz regions, Central Tunisia. Quat Int 338:88–98. doi:10.1016/j.quaint.2014.04.046

    Article  Google Scholar 

  • Mondala NC, Singh VP (2011) Hydrochemical analysis of salinization for a tannery belt in Southern India. J Hydrol 405(3–4):235–247. doi:10.1016/j.jhydrol.2011.05.058

    Article  Google Scholar 

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. EOS Trans AGU 25(6):914–928. doi:10.1029/TR025i006p00914

    Article  Google Scholar 

  • Qian J, Han X, Wang L, Du H, Zu R, Gao Q (2011) Research on the hydrochemical characteristics of groundwater at the southern edge of Taklimakan Desert and along the southern desert highway, China. Procedia Environ Sci 10:1473–1480. doi:10.1016/j.proenv.2011.09.235

    Article  Google Scholar 

  • Redwan M, Moneim AAA (2016) Factors controlling groundwater hydrogeochemistry in the area west of Tahta, Sohag, Upper Egypt. J Afr Earth Sci 118:328–338. doi:10.1016/j.jafrearsci.2015.10.002

    Article  Google Scholar 

  • Sun J, Liu T (2006) The age of the Taklimakan Desert. Science 312(5780):1621. doi:10.1126/science.1124616

    Article  Google Scholar 

  • Sun J, Zhang Z, Zhang L (2009) New evidence on the age of the Taklimakan Desert. Geology 37:159–162. doi:10.1130/G25338A.1

    Article  Google Scholar 

  • Wu Y, Guo JQ (2004) The effect of audiomagnetotellurics sounding prospecting for detecting hydrogeological characteristic in Taklimakan Desert. Chin J Eng Geophys 1(3):269–273 (in Chinese)

    Google Scholar 

  • Xiao J, Jin ZD, Wang J, Zhang F (2015) Hydrochemical characteristics, controlling factors and solute sources of groundwater within the Tarim River Basin in the extreme arid region, NW Tibetan Plateau. Quat Int 380–381:237–246. doi:10.1016/j.quaint.2015.01.021

    Article  Google Scholar 

  • Xu H, Ye M, Li J (2008) The water transfer effects on agricultural development in the lower Tarim River, Xinjiang of China. Agric Water Manag 95(1):59–68. doi:10.1016/j.agwat.2007.09.004

    Article  Google Scholar 

  • Xu J, Chen Y, Li W, Zhang L, Hong Y, Bi X, Yang Y (2012) Statistical analysis of groundwater chemistry of the Tarim River lower reaches, Northwest China. Environ Earth Sci 65(6):1807–1820. doi:10.1007/s12665-011-1161-2

    Article  Google Scholar 

  • Zhang JG, Xu XW, Lei JQ, Sun SG, Fan JL, Li SY, Gu F, Qiu YZ, Xu B (2008) The salt accumulation at the shifting aeolian sandy soil surface with high salinity groundwater drip irrigation in the hinterland of the Taklimakan Desert. Chin Sci Bull 53(2):63–70. doi:10.1007/s11434-008-6006-3

    Google Scholar 

  • Zhang J, Xu X, Lei J, Li S (2013) Research on chemical characteristics of soil salt crusts with saline groundwater drip-irrigation in the Tarim Desert Highway Shelterbelt. SpringerPlus 2(1):S5. doi:10.1186/2193-1801-2-S1-S5

    Article  Google Scholar 

  • Zhao X, Xu H, Zhang P, Fu J, Bai Y (2013) Soil water, salt, and groundwater characteristics in shelterbelts with no irrigation for several years in an extremely arid area. Environ Monit Assess 185(12):10091–10100. doi:10.1007/s10661-013-3315-z

    Article  Google Scholar 

  • Zhu BQ, Yang XP (2007) The ion chemistry of surface and ground waters in the Taklimakan Desert of Tarim Basin, western China. Chin Sci Bull 52(15):2123–2129. doi:10.1007/s11434-007-0298-6

    Article  Google Scholar 

  • Zhu BQ, Yang XP, Rioual P, Qin XG, Liu ZT, Xiong HG, Yu JJ (2011) Hydrogeochemistry of three watersheds (the Erlqis, Zhungarer and Yili) in northern Xinjiang, NW China. Appl Geochem 26(8):1535–1548. doi:10.1016/j.apgeochem.2011.06.018

    Article  Google Scholar 

Download references

Acknowledgments

We thank the laboratory technician of Institute of Geology and Geophysics for their great help in testing groundwater samples. The authors would like to thank all the anonymous reviewers for their constructive comments of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhimin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Wang, Z., Zhang, J. et al. Study on the hydrochemical characteristics of groundwater along the Taklimakan Desert Highway. Environ Earth Sci 75, 1378 (2016). https://doi.org/10.1007/s12665-016-6204-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6204-2

Keywords

Navigation