Skip to main content

Gas-phase formation during thermal energy storage in near-surface aquifers: experimental and modelling results

Abstract

Heating of groundwater by thermal energy storage (TES) poses a potential for the formation of a separate gas phase. Necessary boundary conditions, potential effects and monitoring feasibility of this process were not focused within previous studies. Since the formation of a gas phase could change groundwater flow conditions, hydrochemistry, porous media properties and thus efficiency of TES applications, improved understanding of the process is needed. The temperature of percolated sediment column tests was adjusted to 10, 25, 40 and 70 °C to quantify temperature-induced physical gas-phase formation and its effect on electrical resistance. Gas-phase formation, its accumulation and effects on hydraulic conductivity, heat conductivity and heat capacity were investigated using scenario calculations based on a closed-loop borehole TES system at 60 °C for different geochemical conditions. Experimentally quantified degassing ratios were within the expected range of thermodynamic calculations. The laboratory time-lapse electrical resistivity measurements proofed as a suitable tool to identify the onset and location of the gas-phase formation. Depending on the geochemical conditions, hydraulic conductivity in the area of the simulated heat storage site decreased between 60% and up to one order of magnitude in consequence of degassing within the scenario calculations. Heat conductivity and heat capacity decreased by maximally 3 and 16%, respectively. The results indicate that gas-phase formation as a result of aquifer heating can have pronounced effects especially on groundwater flow conditions and therefore should be considered particularly for nearly or fully gas-saturated groundwater and aquifers containing gas sources.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  • Alikhani J, Deinhart AL, Visser A, Bibby RK, Purtschert R, Moran JE, Massoudieh A, Esser BK (2016) Nitrate vulnerability projections from Bayesian inference of multiple groundwater age tracers. J Hydrol. doi:10.1016/j.jhydrol.2016.04.028

    Google Scholar 

  • Amos RT, Mayer KU (2006) Investigating the role of gas bubble formation and entrapment in contaminated aquifers: reactive transport modelling. J Contam Hydrol 87:123–154. doi:10.1016/j.jconhyd.2006.04.008

    Article  Google Scholar 

  • Amos RT, Mayer KU, Bekins BA, Delin GN, Williams RL (2005) Use of dissolved and vapor-phase gases to investigate methanogenic degradation of petroleum hydrocarbon contamination in the subsurface. Water Resour Res 41:1–15. doi:10.1029/2004WR003433

    Article  Google Scholar 

  • Andrews WJ, Stark JR, Fong AL, Fallon JD (2005) Water-quality assessment of part of the upper Mississippi River Basin, Minnesota and Wisconsin—Ground-water quality along a flow system in the Twin Cities Metropolitan Area, Minnesota, 1997–1998. Scientific Investigations Report 2005–5120

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. A.A. Balkema Publishers, Leiden

    Book  Google Scholar 

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. J Pet Technol 5:54–62

    Google Scholar 

  • Arning E, Kölling M, Schulz HD, Panteleit B, Reichling J (2006) Einfluss oberflächennaher Wärmegewinnung auf geochemische Prozesse im Grundwasserleiter. Grundwasser 11:27–39. doi:10.1007/s00767-006-0116-0

    Article  Google Scholar 

  • Battani A, Deville E, Faure JL, Jeandel E, Noirez S, Tocqué E, Benoît Y, Schmitz J, Parlouar D, Sarda P, Gal F, le Pierres K, Brach M, Braibant G, Beny C, Pokryszka Z, Charmoille A, Bentivegna G, Pironon J, de Donato P, Garnier C, Cailteau C, Barrès O, Radilla G, Bauer A (2010) Geochemical study of natural CO2 emissions in the French massif central: how to predict origin, processes and evolution of CO2 leakage. Oil Gas Sci Technol 65:615–633. doi:10.2516/ogst/2009052

    Article  Google Scholar 

  • Bauer S, Pfeiffer T, Boockmeyer A, Dahmke A, Beyer C (2015) Quantifying induced effects of subsurface renewable energy storage. Energy Proc 76:633–641. doi:10.1016/j.egypro.2015.07.885

    Article  Google Scholar 

  • Beaubien SE, Ciotoli G, Lombardi S (2003) Carbon dioxide and radon gas hazard in the Alban Hills area (central Italy). J Volcanol Geotherm Res 123:63–80. doi:10.1016/S0377-0273(03)00028-3

    Article  Google Scholar 

  • Bergmann P, Schmidt-Hattenberger C, Kiessling D, Rücker C, Labitzke T, Henninges J, Baumann G, Schütt H (2012) Surface-downhole electrical resistivity tomography applied to monitoring of CO2 storage at Ketzin, Germany. Geophysics 77:B253–B267. doi:10.1190/geo2011-0515.1

    Article  Google Scholar 

  • Berta M, Becker A, Dethlefsen F, Ebert M, Koch S, Dahmke A (2015) Experiments showed no reactions coupled to methane leaked into shallow aquifers. First Break 33:93–95

    Google Scholar 

  • Blicher-Mathiesen G, McCarty GW, Nielsen LP (1998) Denitrification and degassing in groundwater estimated from dissolved dinitrogen and argon. J Hydrol 208:16–24. doi:10.1016/S0022-1694(98)00142-5

    Article  Google Scholar 

  • BMWi (2015) Erneuerbare Energien im Jahr 2014. Bundesministerium für Wirtschaft und Energie, Berlin

    Google Scholar 

  • Bockelmann F, Fisch MN, Kühl L, Petruszek T, Nüßle F, Sanner B (2012) Optimization of ground coupled heating and cooling supply systems in office buildings—reversible heat pump and free cooling. In: Proceedings of the 12th international conference on energy storage, Innostock, Spain

  • Bonte M (2013) Impacts of shallow geothermal energy on groundwater quality—a hydrochemical and geomicrobial study of the effects of ground source heat pumps and aquifer thermal energy storage. VU University Amsterdam, Amsterdam

    Google Scholar 

  • Bonte M, Stuyfzand PJ, Hulsmann A, Van Beelen P (2011) Underground thermal energy storage: environmental risks and policy developments in the Netherlands and European Union. Ecol Soc 16:22

    Google Scholar 

  • Bonte M, Röling WFM, Zaura E, Van Der Wielen PWJJ, Stuyfzand PJ, Van Breukelen BM (2013a) Impacts of shallow geothermal energy production on redox processes and microbial communities. Environ Sci Technol 47:14476–14484. doi:10.1021/es4030244

    Article  Google Scholar 

  • Bonte M, van Breukelen BM, Stuyfzand PJ (2013b) Temperature-induced impacts on groundwater quality and arsenic mobility in anoxic aquifer sediments used for both drinking water and shallow geothermal energy production. Water Res 47:5088–5100. doi:10.1016/j.watres.2013.05.049

    Article  Google Scholar 

  • Bridger DW, Allen DM (2005) Designing aquifer thermal energy storage systems. ASHRAE J 47:32–37

    Google Scholar 

  • Brons HJ, Griffioen J, Appelo CAJ, Zehnder AJB (1991) (Bio)geochemical reactions in aquifer material from a thermal energy storage site. Water Res 25:729–736. doi:10.1016/0043-1354(91)90048-U

    Article  Google Scholar 

  • Brunet P, Clément R, Bouvier C (2010) Monitoring soil water content and deficit using Electrical Resistivity Tomography (ERT)—a case study in the Cevennes area, France. J Hydrol 380:146–153

    Article  Google Scholar 

  • Carrigan CR, Yang X, LaBrecque DJ, Larsen D, Freeman D, Ramirez AL, Daily W, Aines R, Newmark R, Friedmann J, Hovorka S (2013) Electrical resistance tomographic monitoring of CO2 movement in deep geologic reservoirs. Int J Greenh Gas Control 18:401–408. doi:10.1016/j.ijggc.2013.04.016

    Article  Google Scholar 

  • Chiodini G, Frondini F (2001) Carbon dioxide degassing from the Albani Hills volcanic region, Central Italy. Chem Geol 177:67–83

    Article  Google Scholar 

  • Coldewey WG, Melchers C (2011) Gas im Münsterland—Gefahren und Nutzung. In: 62. Deutsche Brunnenbauertage und BAW-Baugrundkolloquium “Baugrundaufschlüsse: Planung, Ausschreibung, Durchführung, Überwachung und Interpretation” 13–15. April 2011 im Bau-ABC Rostrup/Bad Zwischenahn. Münster, p 2

  • Comina C, Cosentini RM, Della Vecchia G, Foti S, Musso G (2010) Hydro-chemo-mechanical processes in soil samples: monitoring through electrical resistivity tomography. EPJ Web Conf 6:22012. doi:10.1051/epjconf/20100622012

    Article  Google Scholar 

  • Corwin DL, Lesch AM (2005) Apparent soil electrical conductivity measurements in agriculture. Comput Electron Agric 46:11–43

    Article  Google Scholar 

  • Dachnov VN (1962) Interpretazija resultatov geofiziceskich issledovanij skvazin, 2nd edn. Izdat. Gostoptechizdat, Moscow

    Google Scholar 

  • Daily W, Ramirez A, LaBreque D, Nitao J (1992) Electrical resistivity tomography of vadose water movement. Water Resour Res 28:1429–1442

    Article  Google Scholar 

  • Debenedetti PG (1996) Metastable liquids: concepts and principles. Princeton University Press, Princeton

    Google Scholar 

  • Dietrich P (1999) Konzeption und Auswertung gleichstromgeoelektrischer Tracerversuche unter Verwendung von Sensitivitätskoeffizienten. University of Tübingen, Tübingen

    Google Scholar 

  • Feast NA, Hiscock KM, Dennis PF, Andrews JN (1998) Nitrogen isotope hydrochemistry and denitrification within the Chalk aquifer system of north Norfolk, UK. J Hydrol 211:233–252

    Article  Google Scholar 

  • Feisthauer S, Seidel M, Bombach P, Traube S, Knöller K, Wange M, Fachmann S, Richnow HH (2012) Characterization of the relationship between microbial degradation processes at a hydrocarbon contaminated site using isotopic methods. J Contam Hydrol 133:17–29. doi:10.1016/j.jconhyd.2012.03.001

    Article  Google Scholar 

  • Ferguson G (2009) Unfinished business in geothermal energy. Ground Water 47:167. doi:10.1111/j.1745-6584.2008.00528.x

    Article  Google Scholar 

  • Friedman SP (2005) Soil properties influencing apparent electrical conductivity: a review. Comput Electron Agric 46:45–70. doi:10.1016/j.compag.2004.11.001

    Article  Google Scholar 

  • Friedman SP, Seaton NA (1998) Critical path analysis of the relationship between permeability and electrical conductivity of three-dimensional pore networks. Water Resour Res 34:1703–1710

    Article  Google Scholar 

  • Fry VA, Selker JS, Gorelick SM (1997) Experimental investigations for trapping oxygen gas in saturated porous media for in situ bioremediation. Water Resour Res 33:2687–2696. doi:10.1029/97WR02428

    Article  Google Scholar 

  • Giordano N, Firmbach L, Comina C, Dietrich P, Mandrone G, Vienken T (2013) Laboratory scale electrical resistivity measurements to monitor the heat propagation within porous media for low enthalpy geothermal applications. In: Proceedings of the 32nd conference of the national group of solid earth geophysics—GNGTS, Trieste, Italia, 2013

  • Giordano N, Comina C, Mandrone G (2015) The first Italian experience of ground thermal energy storage: an integrated approach for design and monitoring, from laboratory to field scale. In: Proceedings of the world geothermal congress, Melbourne, Australia, 2015

  • Grellier S, Bouyé JM, Guérin R, Robain H, Skhiri N (2005) Electrical Resistivity Tomography (ERT) applied to moisture measurements in bioreactor: principles, in situ measurements and results. In: Proceedings of the international workshop of “Hydro-Physico-Mechanics of Landfills” LIRIGM, Grenoble, France, 2005

  • Griffioen J, Appelo CAJ (1993) Nature and extent of carbonate precipitation during aquifer thermal energy storage. Appl Geochem 8:161–176. doi:10.1016/0883-2927(93)90032-C

    Article  Google Scholar 

  • Gunn DA, Chambers JE, Uhlemann S, Wilkinson PB, Meldrum PI, Dijkstra TA, Haslam E, Kirkham M, Wragg J, Holyoake S, Hughes PN, Hen-Jones R, Glendinning S (2014) Moisture monitoring in clay embankments using electrical resistivity tomography. Constr Build Mater 92:82–94

    Article  Google Scholar 

  • Hähnlein S, Bayer P, Blum P (2010) International legal status of the use of shallow geothermal energy. Renew Sustain Energy Rev 14:2611–2625. doi:10.1016/j.rser.2010.07.069

    Article  Google Scholar 

  • Hem JD (1985) Study and interpretation of the chemical characteristics of natural water. Department of the Interior, US Geological Survey, Reston, VA

    Google Scholar 

  • Hermans T, Vandenbohede A, Lebbe L, Nguyen F (2012) A shallow geothermal experiment in a sandy aquifer monitored using electric resistivity tomography. Geophysics 77:11–21

    Article  Google Scholar 

  • Hermans T, Wildemeersch S, Jamin P, Orban P, Broyère S, Dassargues A, Nguyen F (2015) Quantitative temperature monitoring of heat tracing experiment using cross-borehole ERT. Geothermics 53:14–26

    Article  Google Scholar 

  • Hoffmann R, Dietrich P (2004) Geoelektrische Messungen zur Bestimmung von Grundwasserfließrichtungen und -geschwindigkeiten. Grundwasser 3:194–203

    Article  Google Scholar 

  • Holm TR, Eisenreich SJ, Rosenberg HL, Holm NP (1987) Groundwater geochemistry of short-term aquifer thermal energy storage test cycles. Water Resour Res 23:1005–1019

    Article  Google Scholar 

  • IEA (2015) Energy technology perspectives 2015. International Energy Agency, Paris

    Book  Google Scholar 

  • Istok JD, Park MM, Peacock AD, Oostrom M, Wietsma TW (2007) An experimental investigation of nitrogen gas produced during denitrification. Ground Water 45:461–467. doi:10.1111/j.1745-6584.2007.00319.x

    Article  Google Scholar 

  • Jenne EA, Andersson O, Willemsen A (1992) Well, hydrology, and geochemistry problems encountered in ATES systems and their solutions. In: Proceedings of the intersociety energy conversion engineering conference

  • Jesußek A, Grandel S, Dahmke A (2013) Impacts of subsurface heat storage on aquifer hydrogeochemistry. Environ Earth Sci 69:1999–2012. doi:10.1007/s12665-012-2037-9

    Article  Google Scholar 

  • Juutinen S, Rantakari M, Kortelainen P, Huttunen JT, Larmola T, Alm J, Silvola J, Martikainen PJ (2009) Methane dynamics in different boreal lake types. Biogeosciences 6:209–223. doi:10.5194/bg-6-209-2009

    Article  Google Scholar 

  • Keller GV, Frischknecht FC (1966) Electrical methods in geophysical prospecting. Pergamon Press, Oxford

    Google Scholar 

  • Knödel K, Krummel H, Lange G (2005) Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten—Band 3: Geophysik. Springer, Berlin

    Google Scholar 

  • Krol MM, Mumford KG, Johnson RL, Sleep BE (2011) Modeling discrete gas bubble formation and mobilization during subsurface heating of contaminated zones. Adv Water Resour 34:537–549. doi:10.1016/j.advwatres.2011.01.010

    Article  Google Scholar 

  • Lide DR (2005) CRC handbook of chemistry and physics, Internet version. CRC Press, Boca Raton

    Google Scholar 

  • Llera FJ, Sato M, Nakatsuka K, Yokoyama H (1990) Temperature dependence of the electrical resistivity of water-saturated rocks. Geophysics 55:576–585

    Article  Google Scholar 

  • Ma R, McBratney A, Whelan B, Minasny B, Short M (2011) Comparing temperature correction models for soil electrical conductivity measurement. Precis Agric 12:55–66

    Article  Google Scholar 

  • Matthes G (1990) Die Beschaffenheit des Grundwassers, 2nd edn. Gebrüder Bornträger, Berlin

    Google Scholar 

  • McCleskey RB, Nordstrom DK, Ryan JD (2011) Electrical conductivity method for natural waters. Appl Geochem 26:227–229

    Article  Google Scholar 

  • McIntosh JC, Grasby SE, Hamilton SM, Osborn SG (2014) Origin, distribution and hydrogeochemical controls on methane occurrences in shallow aquifers, southwestern Ontario, Canada. Appl Geochem 50:37–52. doi:10.1016/j.apgeochem.2014.08.001

    Article  Google Scholar 

  • Mualem Y, Friedman SP (1991) Theoretical prediction of electrical conductivity in saturated and unsaturated soil. Water Resour Res 27:2771–2777

    Article  Google Scholar 

  • Palmer CD, Cherry JA (1984) Geochemical reactions associated with low-temperature thermal energy storage in aquifers. Can Geotech J 21:475–488. doi:10.1139/t84-051

    Article  Google Scholar 

  • Pannike S, Kölling M, Schulz HD, Panteleit B, Reichling J, Scheps V (2006) Auswirkung hydrogeologischer Kenngrößen auf die Kältefahnen von Erdwärmesondenanlagen in Lockersedimenten. Grundwasser 11:6–18. doi:10.1007/s00767-006-0114-2

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. In: U.S. geological survey techniques and methods, book 6. p 497

  • Pfeiffer WT, Bauer S (2015) Subsurface porous media hydrogen storage—scenario development and simulation. Energy Proc 76:565–572. doi:10.1016/j.egypro.2015.07.872

    Article  Google Scholar 

  • Popp S, Beyer C, Dahmke A, Bauer S (2015) Model development and numerical simulation of a seasonal heat storage in a contaminated shallow aquifer. Energy Procedia 76:361–370. doi:10.1016/j.egypro.2015.07.842

    Article  Google Scholar 

  • Possemiers M, Huysmans M, Batelaan O (2014) Influence of Aquifer Thermal Energy Storage on groundwater quality: a review illustrated by seven case studies from Belgium. J Hydrol Reg Stud 2:20–34. doi:10.1016/j.ejrh.2014.08.001

    Article  Google Scholar 

  • Puckett LJ, Cowdery TK (2002) Transport and fate of nitrate in a glacial outwash aquifer in relation to ground water age, land use practices, and redox processes. J Environ Qual 31:782–796

    Article  Google Scholar 

  • Reeburgh W (2007) Oceanic methane biogeochemistry. Am Chem Soc 107:486–513. doi:10.1021/cr050362v

    Google Scholar 

  • Rhoades JD, Chanduvi F, Lesch S (1999) Soil salinity assessment: methods and interpretation of electrical conductivity measurements. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Richards LA (1954) Diagnoses and improvement of saline and alkaline soils. U.S. Department of Agriculture, Washington, DC

    Google Scholar 

  • Robinson DA, Friedman SP (2003) A method for measuring the solid particle permittivity or electrical conductivity of rocks, sediments, and granular materials. J Geophys Res 108:2076. doi:10.1029/2001JB000691

    Google Scholar 

  • Saito T, Hamamoto S, Ueki T, Ohkubo S, Moldrup P, Kawamoto K, Komatsu T (2016) Temperature change affected groundwater quality in a confined marine aquifer during long-term heating and cooling. Water Res 94:120–127. doi:10.1016/j.watres.2016.01.043

    Article  Google Scholar 

  • Sanchez de Lozada D, Vandevivere P, Baveye P, Zinder S (1994) Decrease of the hydraulic conductivity of sand columns by Methanosarcina barkeri. World J Microbiol Biotechnol 10:325–333. doi:10.1007/BF00414873

    Article  Google Scholar 

  • Schmidt T, Müller-Steinhagen H (2005) Erdsonden- und Aquifer-Wärmespeicher in Deutschland. In: OTTI, Profiforum Oberflächennahe Geothermie. Regenstauf, pp 1–12

  • Schroth MH, Istok JD, Ahearn SJ, Selker JS (1996) Characterization of miller-similar silica sands for laboratory hydrologic studies. Soil Sci Soc Am J 60:1331. doi:10.2136/sssaj1996.03615995006000050007x

    Article  Google Scholar 

  • Schulz S, Conrad R (1995) Effect of algal deposition on acetate and methane concentrations in the profundal sediment of a deep lake (Lake Constance). FEMS Microbiol Ecol 16:251–260

    Article  Google Scholar 

  • Shipton ZK, Evans JP, Dockrill B, Heath J, Williams A, Kirchner D, Kolesar PT (2005) Natural leaking CO2- charged systems as analogs for failed geologic storage reservoirs. In: Thomas DC, Benson SM (eds) Carbon dioxyde CO2 capture for storage in deep geologic formations. Elsevier, Amsterdam, pp 699–712

    Chapter  Google Scholar 

  • Tesoriero AJ, Liebscher H, Cox SE (2000) Mechanism and rate of denitrification in an agricultural watershed: electron and mass balance along groundwater flow paths. Water Resour Res 36:1545–1559

    Article  Google Scholar 

  • van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898. doi:10.2136/sssaj1980.03615995004400050002x

    Article  Google Scholar 

  • van Loon LJM (1991) Relevant characteristics for open (ATES) storage. In: Chant VG (ed) IEA ECES annex 7 - Proceedings workshop on generic configuration of seasonal cold storage applications, Utrecht, Sept 18–19, 1991. International Energy Agency, Paris

    Google Scholar 

  • Van Stempvoort D, Maathuis H, Jaworski E, Mayer B, Rich K (2005) Oxidation of fugitive methane in ground water linked to bacterial sulfate reduction. Groundwater 43:187–199

    Article  Google Scholar 

  • Visser A, Broers HP, Bierkens MFP (2007) Dating degassed groundwater with 3H/3He. Water Resour Res. doi:10.1029/2006WR005847

    Google Scholar 

  • Visser A, Schaap JD, Peter HP, Bierkens MFP (2009) Degassing of 3H/3He, CFCs and SF6 by denitrification: measurements and two-phase transport simulations. J Contam Hydrol 103:206–218. doi:10.1016/j.jconhyd.2008.10.013

    Article  Google Scholar 

  • Visser A, Singleton M, Madrid V, Esser B (2014) Summary and preliminary interpretation of tritium and dissolved noble gas data from site 300. Lawrence Livermore National Laboratory LLNLTR- 649041

  • Vogel JC, Talma AS, Heaton THE (1981) Gaseous nitrogen as evidence for denitrification in groundwater. J Hydrol 50:191–200

    Article  Google Scholar 

  • Wendland F, Bach M, Kunkel R (1998) In: Finke PA, Bouma J, Hoosbeek MR (eds) Soil and water quality at different scales: proceedings of the workshop “Soil and Water Quality at Different Scales’’ held 7–9 August 1996, Wageningen, The Netherlands. Springer, Dordrecht, pp 167–179

  • Willemsen A, Appelo CAJ (1985) Chemical reactions during heat storage in shallow aquifers in the netherlands: laboratory experiments and Geochemical Modelling. In: Hydrogeology in the service of man, mémoires of the 18th congress of the international association of hydrogcologists. Cambridge, pp 68–78

  • Wilson GB, Andrews JN, Bath AH (1990) Dissolved gas evidence for denitrification in the Lincolnshire Limestone aquifer, eastern England. J Hydrol 113:51–60

    Article  Google Scholar 

  • Yang X, Lassen RN, Jensen KH, Looms MC (2015) Monitoring CO2 migration in a shallow sand aquifer using 3D crosshole electrical resistivity tomography. Int J Greenh Gas Control 42:534–544. doi:10.1016/j.ijggc.2015.09.005

    Article  Google Scholar 

  • Ye S, Sleep BE, Chien C (2009) The impact of methanogenesis on flow and transport in coarse sand. J Contam Hydrol 103:48–57. doi:10.1016/j.jconhyd.2008.09.004

    Article  Google Scholar 

Download references

Acknowledgements

This study is part of the ANGUS + Project (03EK3022A) funded by the German Ministry of Education and Research. Also we would like to thank the reviewers for helping us in improving the paper with their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klas Lüders.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on ‘‘Subsurface Energy Storage’’, guest edited by Sebastian Bauer, Andreas Dahmke, and Olaf Kolditz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 548 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lüders, K., Firmbach, L., Ebert, M. et al. Gas-phase formation during thermal energy storage in near-surface aquifers: experimental and modelling results. Environ Earth Sci 75, 1404 (2016). https://doi.org/10.1007/s12665-016-6181-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6181-5

Keywords

  • Thermal energy storage
  • Gas-phase formation
  • Time-lapse ER measurements
  • Aquifer hydraulics
  • ANGUS+