Environmental Earth Sciences

, 75:1347 | Cite as

The coupled non-isothermal, multiphase-multicomponent flow and reactive transport simulator OpenGeoSys–ECLIPSE for porous media gas storage

Thematic Issue
Part of the following topical collections:
  1. Subsurface Energy Storage


Numerical simulations are a viable tool to gain insights into complex coupled THMC processes prevailing in many geoscientific applications. In this work, a coupling approach for OpenGeoSys and ECLIPSE is presented, which combines the multiphase flow simulations of ECLIPSE with heat and reactive geochemical component transport simulations of OpenGeoSys. The coupled simulator is capable of dealing with multiphase-multicomponent systems with no specific limitations regarding the components used. Furthermore, thermal effects like the Joule–Thomson effect and geochemical feedback on fluid flow and mass transport are accounted for by the coupled simulator. The developed coupled code is validated in a series of benchmarks. It is found that the results of the coupled simulator are in very close agreement with those obtained from the reference simulations with the relative errors being smaller than 0.00001, 0.0002 and 0.003 % for phase pressures, saturations and component concentrations, respectively. Validation of the thermal coupling of the simulators shows the same good agreement, if no thermal feedback on fluid flow is considered with a maximum relative error of 0.0015 %. Including thermal feedback on fluid flow shows increased relative differences of up to 0.3 % due to the slightly different equations of states used in the simulators. Given the good accuracy of the validation runs, the coupled code can thus now be applied for reservoir simulations of coupled processes occurring in the subsurface.


Simulator coupling OpenGeoSys ECLIPSE THMC processes ANGUS+ 



The presented work is part of the ANGUS+ research project ( We gratefully acknowledge the funding of this project provided by the Federal Ministry of Education and Research (BMBF) under Grant number 03EK3022 through the energy storage funding initiative “Energiespeicher” of the German Federal Government.


  1. Ballarini E, Beyer C, Bauer RB, Griebler C, Bauer S (2014) Model based evaluation of a contaminant plume development under aerobic and anaerobic conditions in 2D bench-scale tank experiments. Biodegradation 25:351–371. doi: 10.1007/s10532-013-9665-y CrossRefGoogle Scholar
  2. Bauer S, Beyer C, Kolditz O (2006) Assessing measurement uncertainty of first-order degradation rates in heterogeneous aquifers. Water Resour Res 42:W01420. doi: 10.1029/2004WR003878 CrossRefGoogle Scholar
  3. Bauer S, Beyer C, Dethlefsen F, Dietrich P, Duttmann R, Ebert M, Feeser V, Görke U, Köber R, Kolditz O, Rabbel W, Schanz T, Schäfer D, Würdemann H, Dahmke A (2013) Impacts of the use of the geological subsurface for energy storage: an investigation concept. Environ Earth Sci 70:3935–3943. doi: 10.1007/s12665-013-2883-0 CrossRefGoogle Scholar
  4. Bear J, Bachmat Y (1990) Introduction to modelling of transport phenomena in porous media. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  5. Benisch K, Bauer S (2013) Short- and long-term regional pressure build-up during CO2 injection and its applicability for site monitoring. Int J Greenh Gas Control 13:220–233. doi: 10.1016/j.ijggc.2013.09.002 CrossRefGoogle Scholar
  6. Benisch K, Graupner B, Bauer S (2013) The coupled OpenGeoSys–Eclipse simulator for simulation of CO2 storage—code comparison for fluid flow and geomechanical processes. Energy Procedia 37:3663–3671. doi: 10.1016/j.egypro.2013.06.260 CrossRefGoogle Scholar
  7. Beyer C, Bauer S, Kolditz O (2006) Uncertainty assessment of contaminant plume length estimates in heterogeneous aquifers. J Contam Hydrol 87:73–95. doi: 10.1016/j.jconhyd.2006.04.006 CrossRefGoogle Scholar
  8. Beyer C, Konrad W, Rügner H, Bauer S, Liedl R, Grathwohl P (2009) Model-based prediction of long-term leaching of contaminants from secondary materials in road constructions and noise protection dams. Waste Manag 29:839–850. doi: 10.1016/j.wasman.2008.06.025 CrossRefGoogle Scholar
  9. Beyer C, Li D, De Lucia M, Kühn M, Bauer S (2012) Modelling CO2-induced fluid–rock interactions in the Altensalzwedel gas reservoir. Part II: coupled reactive transport simulation. Environ Geol 67:573–588. doi: 10.1007/s12665-012-1684-1 Google Scholar
  10. Boockmeyer A, Bauer S (2014) High-temperature heat storage in geological media: high resolution simulation of near-borehole processes. Géotech Lett 4:151–156. doi: 10.1680/geolett.13.00060 CrossRefGoogle Scholar
  11. Börgesson L (1996) AQAQUS. Dev Geotech Eng 79:565–570. doi: 10.1016/S0165-1250(96)80047-2 CrossRefGoogle Scholar
  12. Böttcher N, Singh AK, Kolditz O, Liedl R (2012) Non-isothermal, compressible gas flow for the simulation of an enhanced gas recovery application. J Comput Appl Math 236:4933–4943. doi: 10.1016/ CrossRefGoogle Scholar
  13. Diersch HJ (2014) FEFLOW—finite element modeling of flow, mass and heat transport in porous and fractured media. Arch Microbiol 149:350–357. doi: 10.1007/978-3-642-38739-5 Google Scholar
  14. Flemisch S, Darcis M, Erbertseder K, Faigle B, Lauser B, Mosthaf K, Muthin S, Nuske P, Tatomir A, Wolff M, Helmig R (2011) DuMuX: DUNE for multi-{phase, component, scale, physics,…} flow and transport in porous media. Adv Water Resour 34:1102–1112. doi: 10.1016/j.advwatres.2011.03.007 CrossRefGoogle Scholar
  15. Freiboth S, Class H, Helmig R, Graf T, Ehlers W, Schwarz V, Vrettos C (2009) A model for multiphase flow and transport in porous media including a phenomenological approach to account for deformation—a model concept and its validation within a code intercomparison study. Comput Geosci 13:281–300. doi: 10.1007/s10596-008-9118-6 CrossRefGoogle Scholar
  16. Graupner B, Li D, Bauer S (2011) The coupled simulator ECLIPSE–OpenGeoSys for the simulation of CO2 storage in saline formations. Energy Procedia 4:3794–3800. doi: 10.1016/j.egypro.2011.02.314 CrossRefGoogle Scholar
  17. Hagemann B, Rasoulzadeh M, Panfilov M, Ganzer L, Reitenbach V (2015) Hydrogenization of underground storage of natural gas. Comput Geosci 19:1–12. doi: 10.1007/s10596-015-9515-6 CrossRefGoogle Scholar
  18. He W, Beyer C, Fleckenstein JH, Jang E, Kolditz O, Naumov D, Kalbacher T (2015) A parallelization scheme to simulate reactive transport in the subsurface environment with OGS#IPhreeqc 5.5.7-3.1.2. Geosci Model Dev 8:3333–3348. doi: 10.5194/gmd-8-3333-2015 CrossRefGoogle Scholar
  19. Hein P, Kolditz O, Görke UW, Bucher A, Shao H (2016) A numerical study on the sustainability and efficiency of borehole heat exchanger coupled ground source heat pump systems. Appl Therm Eng 100:421–433. doi: 10.1016/j.applthermaleng.2016.02.039 CrossRefGoogle Scholar
  20. Jessen K, Kovscek AR, Orr FM Jr (2005) Increasing CO2 storage in oil recovery. Energy Convers Manag 46:293–311. doi: 10.1016/j.enconman.2004.02.019 CrossRefGoogle Scholar
  21. Johnston HL, Bezman II, Hood CB (1946) Joule–Thomson effects in hydrogen at liquid air and at room temperatures. J Am Chem Soc 68:2367–2373. doi: 10.1021/ja01215a069 CrossRefGoogle Scholar
  22. Joule JP, Thomson W (1854) On the thermal effects of fluids in motion. Part II. Philos Trans R Soc Lond 144:321–364. doi: 10.1098/rstl.1854.0016 CrossRefGoogle Scholar
  23. Kempka T, Kühn M, Class H, Frykmann P, Kopp A, Nielsen CM, Probst P (2010) Modelling of CO2 arrival time at Ketzin—part I. Int J Greenhouse Gas Control 4:1007–1015. doi: 10.1016/j.ijggc.2010.07.005 CrossRefGoogle Scholar
  24. Kolditz O, Bauer S (2004) A process-oriented approach to computing multifield problems in porous media. J Hydroinform 6:225–244Google Scholar
  25. Kolditz O, Bauer S, Böttcher N, Elsworth D, Görke UJ, McDermott CI, Park CH, Singh AK, Taron J, Wang W (2012) Numerical simulation of two-phase flow in deformable porous media: application to carbon dioxide storage in the subsurface. Math Comput Simul 82:1919–1935. doi: 10.1016/j.matcom.2012.06.010 CrossRefGoogle Scholar
  26. Kolditz O, Shao H, Wang W, Bauer S (eds) (2015) Thermo-hydro-mechanical-chemical processes in fractures porous media: modelling and benchmarking, closed-form solutions. Springer, Heidelberg. doi: 10.1007/978-3-319-11894-9 Google Scholar
  27. Kolditz O, Görke UJ, Shao H, Wang W, Bauer S (eds) (2016) Thermo-hydro-mechanical-chemical processes in fractures porous media: modelling and benchmarking, benchmarking initiatives. Springer, Heidelberg. doi: 10.1007/978-3-319-29224-3 Google Scholar
  28. Kosakowski G, Watanabe N (2014) OpenGeoSys-Gem: a numerical tool for calculating geochemical and porosity changes in saturated and partially saturated media. Phys Chem Earth 70–71:138–149. doi: 10.1016/j.pce.2013.11.008 CrossRefGoogle Scholar
  29. Kroniger D, Madlener R (2014) Hydrogen storage for wind parks: a real options evaluation for an optimal investment in more flexibility. Appl Energy 136:931–946. doi: 10.1016/j.apenergy.2014.04.041 CrossRefGoogle Scholar
  30. Li D, Bauer S, Benisch K, Graupner B, Beyer C (2014) OpenGeoSys-ChemApp: a coupled simulator for reactive transport in multiphase systems and application to CO2 storage formation in Northern Germany. Acta Geotech 9:67–79. doi: 10.1007/s11440-013-0234-7 CrossRefGoogle Scholar
  31. Ma X, Gildin E, Plaksina T (2015) Efficient optimization framework for integrated placement of horizontal wells and hydraulic fracture stages in unconventional gas reservoirs. J Unconv Oil Gas Resour 9:1–17. doi: 10.1016/j.juogr.2014.09.001 CrossRefGoogle Scholar
  32. McDermott CI, Randriamanjatosoa ARL, Tenzer H, Kolditz O (2006) Simulation of heat extraction from crystalline rocks: the influence of coupled processes on differential reservoir cooling. Geothermics 35:321–344. doi: 10.1016/j.geothermics.2006.05.002 CrossRefGoogle Scholar
  33. Michels A, de Graaf W, Wolkers GJ (1964) Thermodynamic properties of hydrogen and deuterium at temperatures between −175 °C and 150 °C and at densities up to 2500 atmospheres. Appl Sci Res Sect A 12:9–32. doi: 10.1007/BF03184744 Google Scholar
  34. Oldenburg C (2003) Carbon dioxide as cushion gas for natural gas storage. Energy Fuel 17:240–246. doi: 10.1021/ef020162b CrossRefGoogle Scholar
  35. Oldenburg C (2007) Joule–Thomson cooling due to CO2 injection into natural gas reservoirs. Energy Convers Manag 48:1808–1815. doi: 10.1016/j.enconman.2007.01.010 CrossRefGoogle Scholar
  36. Oldenburg C, Pan L (2013) Utilization of CO2 as cushion gas for porous media compressed air energy storage. Greenh Gases Sci Technol 3:1–12. doi: 10.1002/ghg.1332 CrossRefGoogle Scholar
  37. Onaisi A, Samier P, Koutsabeloulis N, Longuemare P (2002) Management of stress sensitive reservoirs using two coupled stress-reservoir simulation tools : ECL2VIS and ATH2VIS. Soc Pet Eng. doi: 10.2118/78512-MS Google Scholar
  38. Panfilov M (2010) Underground storage of hydrogen: in situ self-organization and methane generation. Transp Porous Med 85:841–865. doi: 10.1007/s11242-010-9595-7 CrossRefGoogle Scholar
  39. Pruess K (2004) The TOUGH codes—a family of simulation tools for multiphase flow and transport processes in permeable media. Vadose Zone J 3:738–746. doi: 10.2136/vzj2004.0738 Google Scholar
  40. Rutqvist J, Wu YS, Tsang CF, Bodvarsson G (2002) A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. Int J Rock Mech Min Sci 39:429–442. doi: 10.1016/S1365-1609(02)00022-9 CrossRefGoogle Scholar
  41. Schlumberger NV (2015) ECLIPSE v2015.2—technical descriptionGoogle Scholar
  42. Shao H, Kosakowski G, Berner U, Kulik D, Mäder U, Kolditz O (2013) Reactive transport modeling of clogging process at Maqarin natural analogue site. Phys Chem Earth 64:21–31. doi: 10.1016/j.pce.2013.01.002 CrossRefGoogle Scholar
  43. Singh A, Delfs JO, Görke UW, Kolditz O (2014) Towards physical aspects affecting a possible leakage of geological storage CO2 into the shallow subsurface. Acta Geotech 9:81–86. doi: 10.1007/s11440-013-0237-4 CrossRefGoogle Scholar
  44. Sørensen B (1975) Energy and resources. Science 189:255–260. doi: 10.1126/science.189.4199.255 CrossRefGoogle Scholar
  45. Taron J, Elsworth D (2009) Thermal-hydrologic-chemical processes in the evolution of engineered geothermal reservoirs. Int J Rock Mech Min Sci 46:855–864. doi: 10.1016/j.ijrmms.2009.01.007 CrossRefGoogle Scholar
  46. VDI (2010) Thermal use of the underground: fundamentals, approvals, environmental aspects. VDI4640. Verein Deutscher Ingenieure e.V., DüsseldorfGoogle Scholar
  47. Wagner W, Cooper JR, Dittmann A, Kijima J, Kretzschmar HJ, Kruse A, Mareš R, Oguchi K, Sato H, Stöcker I, Šifner O, Takaishi Y, Tanishita I, Trübenbach J, Willkommen Th (2000) The IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam. J Eng Gas Turbines Power 122:150–184. doi: 10.1115/1.483186 CrossRefGoogle Scholar
  48. Xie M, Bauer S, Kolditz O, Nowak T, Shao H (2006) Numerical simulation of reactive processes in an experiment with partially saturated bentonite. J Contam Hydrol 83:122–147. doi: 10.1016/j.jconhyd.2005.11.003 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of GeosciencesKiel UniversityKielGermany
  2. 2.Swiss Federal Nuclear Safety Inspectorate ENSIBruggSwitzerland

Personalised recommendations