Advertisement

Environmental Earth Sciences

, 75:1332 | Cite as

Spatial distribution, sources and risk assessment of potentially toxic trace elements and rare earth elements in soils of the Langtang Himalaya, Nepal

  • Lekhendra Tripathee
  • Shichang Kang
  • Dipesh Rupakheti
  • Qianggong Zhang
  • Roshan Man Bajracharya
  • Chhatra Mani Sharma
  • Jie Huang
  • Ayush Gyawali
  • Rukumesh Paudyal
  • Mika Sillanpää
Original Article

Abstract

Soils in the fragile Himalayan region could be affected by the transport and deposition of potentially toxic trace metals (PTEs) from urban and industrialized areas of South Asia. The transported pollutants could pose a serious threat to the soil quality in the pristine regions at high elevations having minimal direct human influence. Therefore, it is important to understand the geochemical and physical characteristics of soils in this region and determine the extent of their chemical pollution. In order to achieve these objectives, soil samples were collected from different elevation transects of the Langtang Himalaya in Nepal. The samples were analyzed for PTEs and rare earth elements for the purpose of identifying their possible sources and to evaluate their environmental risk in the region. The PTEs and REEs concentrations were measured by ICP-MS (X-7; Thermo-elemental, USA) and total organic carbon (TOC) by TOC analyzer. The results of this study were comparable to those of the world average background soil as well as the Tibetan plateau surface soil. TOC revealed a decreasing trend with increasing elevation. Correlation analysis and principle component analysis (PCA) indicated that most of the elements were highly associated with major crustal elements, suggesting that their primary sources were of natural origin. Furthermore, the geo-accumulation index (I geo), enrichment factor (EF) and pollution index (PI) analyses indicated that the Himalayan soils represent minimal pollution and the data from this study may be used as background values for the Himalayan region in the future studies. REEs in the soil samples were found to be consistent with an order of average abundance of the Earth’s crust. In addition, the chondrite-normalized REE distribution of the light REE suggested enrichment of LREE and Eu depletion. Moreover, this study emphasized that soils of the Himalayan region could, in future, be under threat of elemental pollution from long-range transport via atmospheric circulation and deposition.

Keywords

Potentially toxic elements Rare earth elements Total organic carbon Soil Himalayas Nepal 

Notes

Acknowledgments

This study was supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB03030504), the National Natural Science Foundation of China (41121001, 41225002) and Academy of Finland (264307). Lekhendra Tripathee is supported by Chinese Academy of Sciences, President’s International Fellowship Initiative (PIFI, Grant No: 2016PE007). The authors are grateful to Dr. Shaopeng Gao for his assistance in the laboratory work. We would like to appreciate and thank the Associate Editor and four anonymous reviewers for their valuable comments to improve our manuscript.

Supplementary material

12665_2016_6140_MOESM1_ESM.doc (52 kb)
Supplementary material 1 (DOC 52 kb)

References

  1. Abdu N, Agbenin JO, Buerkert A (2011) Geochemical assessment, distribution, and dynamics of trace elements in urban agricultural soils under long-term wastewater irrigation in Kano, northern Nigeria. J Plant Nutr Soil Sci 174(3):447–458. doi: 10.1002/jpln.201000333 CrossRefGoogle Scholar
  2. Ahmad I, Chandra R (2013) Geochemistry of loess-paleosol sediments of Kashmir Valley, India: provenance and weathering. J Asian Earth Sci 66:73–89CrossRefGoogle Scholar
  3. Alexakis D, Gotsis D, Giakoumakis S (2015) Evaluation of soil salinization in a Mediterranean site (Agoulinitsa district—West Greece). Arab J Geosci 8(3):1373–1383CrossRefGoogle Scholar
  4. Bai J, Xiao R, Cui B, Zhang K, Wang Q, Liu X et al (2011) Assessment of heavy metal pollution in wetland soils from the young and old reclaimed regions in the Pearl River Estuary, South China. Environ Pollut 159(3):817–824. doi: 10.1016/j.envpol.2010.11.004 CrossRefGoogle Scholar
  5. Banat KM, Howari FM, Al-Hamad AA (2005) Heavy metals in urban soils of central Jordan: should we worry about their environmental risks? Environ Res 97(3):258–273CrossRefGoogle Scholar
  6. Bhatt MP, Masuzawa T, Yamamoto M, Takeuchi N (2007) Chemical characteristics of pond waters within the debris area of Lirung Glacier in Nepal Himalaya. J Limn 66(2):71–80CrossRefGoogle Scholar
  7. Bhatt MP, Takeuchi N, Acevedo MF (2016) Chemistry of Supraglacial Ponds in the Debris-covered area of Lirung Glacier in Central Nepal Himalayas. Aquat Geochem 22(1):35–64CrossRefGoogle Scholar
  8. Bowen HJM (1979) Environmental chemistry of the elements. Academic, New YorkGoogle Scholar
  9. Caspari T, Bäumler R, Norbu C, Tshering K, Baillie I (2006) Geochemical investigation of soils developed in different lithologies in Bhutan, Eastern Himalayas. Geoderma 136(1–2):436–458. doi: 10.1016/j.geoderma.2006.04.017 CrossRefGoogle Scholar
  10. Dœlsch E, Van de Kerchove V, Saint Macary H (2006) Heavy metal content in soils of Réunion (Indian Ocean). Geoderma 134(1–2):119–134. doi: 10.1016/j.geoderma.2005.09.003 CrossRefGoogle Scholar
  11. Egashira K, Aramaki K, Yoshimasa M, Takeda A, Yamasaki S (2004) Rare earth elements and clay minerals of soils of the floodplains of three major rivers in Bangladesh. Geoderma 120(1–2):7–15. doi: 10.1016/j.geoderma.2003.07.005 CrossRefGoogle Scholar
  12. Gabrielli P, Barbante C, Turetta C, Marteel A, Boutron C, Cozzi G et al (2006) Direct determination of rare earth elements at the subpicogram per gram level in antarctic ice by ICP-SFMS using a desolvation system. Anal Chem 78(6):1883–1889CrossRefGoogle Scholar
  13. Gałuszka A, Migaszewski ZM, Dołęgowska S, Michalik A, Duczmal-Czernikiewicz A (2015) Geochemical background of potentially toxic trace elements in soils of the historic copper mining area: a case study from Miedzianka Mt., Holy Cross Mountains, south-central Poland. Environ Earth Sci 74(6):4589–4605CrossRefGoogle Scholar
  14. Guo G, Wu F, Xie F, Zhang R (2012) Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China. J Environ Sci-China 24(3):410–418CrossRefGoogle Scholar
  15. Haskin L, Haskin M, Frey F, Wildeman T (1968) Relative and absolute terrestrial abundances of the rare earths. Orig Distrib Elem 1:889–911CrossRefGoogle Scholar
  16. Huang X, Sillanpaa M, Duo B, Gjessing ET (2008) Water quality in the Tibetan Plateau: metal contents of four selected rivers. Environ Pollut 156(2):270–277. doi: 10.1016/j.envpol.2008.02.014 CrossRefGoogle Scholar
  17. Huang X, Sillanpaa M, Gjessing ET, Vogt RD (2009) Water quality in the Tibetan Plateau: major ions and trace elements in the headwaters of four major Asian rivers. Sci Total Environ 407(24):6242–6254. doi: 10.1016/j.scitotenv.2009.09.001 CrossRefGoogle Scholar
  18. Inger S, Harris N (1992) Tectonothermal evolution of the High Himalayan crystalline sequence, Langtang Valley, northern Nepal. J Metamorph Geol 10(3):439–452CrossRefGoogle Scholar
  19. Iqbal J, Shah MH (2011) Distribution, correlation and risk assessment of selected metals in urban soils from Islamabad, Pakistan. J Hazard Mater 192(2):887–898. doi: 10.1016/j.jhazmat.2011.05.105 CrossRefGoogle Scholar
  20. Jiang X, Lu WX, Zhao HQ, Yang QC, Yang ZP (2014) Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump. Nat Hazard Earth Sys 14(6):1599–1610CrossRefGoogle Scholar
  21. Kumar Sharma R, Agrawal M, Marshall F (2007) Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicol Environ Saf 66(2):258–266. doi: 10.1016/j.ecoenv.2005.11.007 CrossRefGoogle Scholar
  22. Li XD, Lee SL, Wong SC, Shi WZ, Thornton I (2004) The study of metal contamination in urban soils of Hong Kong using a GIS-based approach. Environ Pollut 129(1):113–124CrossRefGoogle Scholar
  23. Li C, Kang S, Wang X, Ajmone-Marsan F, Zhang Q (2008) Heavy metals and rare earth elements (REEs) in soil from the Nam Co Basin, Tibetan Plateau. Environ Geol 53(7):1433–1440. doi: 10.1007/s00254-007-0752-4 CrossRefGoogle Scholar
  24. Li C, Kang S, Zhang Q (2009) Elemental composition of Tibetan Plateau top soils and its effect on evaluating atmospheric pollution transport. Environ Pollut 157(8):2261–2265CrossRefGoogle Scholar
  25. Loell M, Reiher W, Felix-Henningsen P (2011) Contents and bioavailability of rare earth elements in agricultural soils in Hesse (Germany). J Plant Nutr Soil Sci 174(4):644–654. doi: 10.1002/jpln.201000265 CrossRefGoogle Scholar
  26. Micó C, Recatalá L, Peris M, Sánchez J (2006) Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere 65:863–872CrossRefGoogle Scholar
  27. Müller G (1969) Index of geoaccumulation in sediments of the Rhine River. Geol J 2(3):108–118Google Scholar
  28. Oliver M (1997) Soil and human health: a review. Eur J Soil Sci 48(4):573–592CrossRefGoogle Scholar
  29. Olmez I, Gordon GE (1985) Rare earths: atmospheric signatures for oil-fired power plants and refineries. Science 229(4717):966–968CrossRefGoogle Scholar
  30. Paudyal R, Kang S, Sharma C, Tripathee L, Huang J, Rupakheti D et al (2016) Major ions and trace elements of two selected rivers near Everest region, southern Himalayas, Nepal. Environ Earth Sci 75:46. doi: 10.1007/s12665-015-4811-y CrossRefGoogle Scholar
  31. Razali N, Wah Y (2011) Power comparisons of Shapiro–Wilk, Kolmogorov–Smirnov, Lilliefors and Anderson–Darling tests. J Stat Model Anal 2(1):21–33Google Scholar
  32. Reimann C, Filzmoser P, Garrett R, Dutter R (2008) Statistical data analysis explained: applied environmental statistics with R. Wiley, New YorkCrossRefGoogle Scholar
  33. Riba I, DelValls T, Forja J, Gómez-Parra A (2002) Evaluating the heavy metal contamination in sediments from the Guadalquivir estuary after the Aznalcóllar mining spill (SW Spain): a multivariate analysis approach. Environ Monit Assess 77(2):191–207CrossRefGoogle Scholar
  34. Roy P, Smykatz-Kloss W (2007) REE geochemistry of the recent playa sediments from the Thar Desert, India: an implication to playa sediment provenance. Chem Erde-Geochem 67(1):55–68CrossRefGoogle Scholar
  35. Shapiro S, Wilk M (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3):591–611CrossRefGoogle Scholar
  36. Sharma CM, Kang S, Sillanpää M, Li Q, Zhang Q, Huang J et al (2015) Mercury and selected trace elements from a remote (Gosainkunda) and an urban (Phewa) Lake Waters of Nepal. Water Air Soil Poll. doi: 10.1007/s11270-014-2276-3 Google Scholar
  37. Sheng J, Wang X, Gong P, Tian L, Yao T (2012) Heavy metals of the Tibetan top soils: level, source, spatial distribution, temporal variation and risk assessment. Environ Sci Pollut Res Int 19(8):3362–3370. doi: 10.1007/s11356-012-0857-5 CrossRefGoogle Scholar
  38. Srinivasa Gowd S, Ramakrishna Reddy M, Govil PK (2010) Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. J Hazard Mater 174(1–3):113–121. doi: 10.1016/j.jhazmat.2009.09.024 CrossRefGoogle Scholar
  39. SD, Survey Department (1984) Land system map, central development region, Nepal. Topographical Survey Branch, Survey Department. Ministry of Land Reform, HMG, Kathmandu, NepalGoogle Scholar
  40. Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33(2):241–265CrossRefGoogle Scholar
  41. Tiller K (1989) Heavy metals in soils and their environmental significance. In: Stewart BA (ed) Advances in soil science. Springer, pp 113–142Google Scholar
  42. Tripathee L, Kang S, Huang J, Sharma CM, Sillanpää M, Guo J et al (2014) Concentrations of trace elements in wet deposition over the central Himalayas, Nepal. Atmos Environ 95:231–238. doi: 10.1016/j.atmosenv.2014.06.043 CrossRefGoogle Scholar
  43. Vinogradov AP (1959) The geochemistry of rare and dispersed chemical elements in soils, 2nd edn. Consultants Bureau, New YorkGoogle Scholar
  44. Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Ac 59(7):1217–1232. doi: 10.1016/0016-7037(95)00038-2 CrossRefGoogle Scholar
  45. Yalcin MG, Ilhan S (2008) Multivariate analyses to determine the origin of potentially harmful heavy metals in beach and dune sediments from Kizkalesi coast (Mersin), Turkey. Bull Environ Contam Toxicol 81(1):57–68. doi: 10.1007/s00128-008-9461-2 CrossRefGoogle Scholar
  46. Yang Z, Lu W, Long Y, Bao X, Yang Q (2011) Assessment of heavy metals contamination in urban topsoil from Changchun City, China. J Geochem Explor 108(1):27–38. doi: 10.1016/j.gexplo.2010.09.006 CrossRefGoogle Scholar
  47. Yongming H, Peixuan D, Junji C, Posmentier ES (2006) Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci Total Environ 355(1–3):176–186. doi: 10.1016/j.scitotenv.2005.02.026 CrossRefGoogle Scholar
  48. Zhang XP, Deng W, Yang XM (2002) The background concentrations of 13 soil trace elements and their relationships to parent materials and vegetation in Xizang (Tibet), China. J Asian Earth Sci 21(2):167–174CrossRefGoogle Scholar
  49. Zhang Q, Kang S, Kaspari S, Li C, Qin D, Mayewski PA et al (2009) Rare earth elements in an ice core from Mt. Everest: seasonal variations and potential sources. Atmos Res 94(2):300–312. doi: 10.1016/j.atmosres.2009.06.005 CrossRefGoogle Scholar
  50. Zhang Q, Kang S, Li C, Chen F, Boukalova Z, Cerny I (2011) Assessment of elemental distribution and trace element contamination in surficial wetland sediments, Southern Tibetan Plateau. Environ Monit Assess 177(1–4):301–313. doi: 10.1007/s10661-010-1635-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Lekhendra Tripathee
    • 1
    • 3
    • 6
  • Shichang Kang
    • 1
    • 2
  • Dipesh Rupakheti
    • 4
  • Qianggong Zhang
    • 2
    • 4
  • Roshan Man Bajracharya
    • 5
  • Chhatra Mani Sharma
    • 3
    • 5
    • 6
  • Jie Huang
    • 4
    • 6
  • Ayush Gyawali
    • 5
  • Rukumesh Paudyal
    • 1
    • 3
  • Mika Sillanpää
    • 6
  1. 1.State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and ResourcesChinese Academy of Sciences (CAS)LanzhouChina
  2. 2.CAS Center for Excellence in Tibetan Plateau Earth SciencesBeijingChina
  3. 3.Himalayan Environment Research Institute (HERI)KathmanduNepal
  4. 4.Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
  5. 5.Department of Environmental Science and EngineeringKathmandu UniversityDhulikhelNepal
  6. 6.Laboratory of Green ChemistryLappeenranta University of TechnologyMikkeliFinland

Personalised recommendations