Skip to main content
Log in

Spatial distribution, sources and risk assessment of potentially toxic trace elements and rare earth elements in soils of the Langtang Himalaya, Nepal

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Soils in the fragile Himalayan region could be affected by the transport and deposition of potentially toxic trace metals (PTEs) from urban and industrialized areas of South Asia. The transported pollutants could pose a serious threat to the soil quality in the pristine regions at high elevations having minimal direct human influence. Therefore, it is important to understand the geochemical and physical characteristics of soils in this region and determine the extent of their chemical pollution. In order to achieve these objectives, soil samples were collected from different elevation transects of the Langtang Himalaya in Nepal. The samples were analyzed for PTEs and rare earth elements for the purpose of identifying their possible sources and to evaluate their environmental risk in the region. The PTEs and REEs concentrations were measured by ICP-MS (X-7; Thermo-elemental, USA) and total organic carbon (TOC) by TOC analyzer. The results of this study were comparable to those of the world average background soil as well as the Tibetan plateau surface soil. TOC revealed a decreasing trend with increasing elevation. Correlation analysis and principle component analysis (PCA) indicated that most of the elements were highly associated with major crustal elements, suggesting that their primary sources were of natural origin. Furthermore, the geo-accumulation index (I geo), enrichment factor (EF) and pollution index (PI) analyses indicated that the Himalayan soils represent minimal pollution and the data from this study may be used as background values for the Himalayan region in the future studies. REEs in the soil samples were found to be consistent with an order of average abundance of the Earth’s crust. In addition, the chondrite-normalized REE distribution of the light REE suggested enrichment of LREE and Eu depletion. Moreover, this study emphasized that soils of the Himalayan region could, in future, be under threat of elemental pollution from long-range transport via atmospheric circulation and deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdu N, Agbenin JO, Buerkert A (2011) Geochemical assessment, distribution, and dynamics of trace elements in urban agricultural soils under long-term wastewater irrigation in Kano, northern Nigeria. J Plant Nutr Soil Sci 174(3):447–458. doi:10.1002/jpln.201000333

    Article  Google Scholar 

  • Ahmad I, Chandra R (2013) Geochemistry of loess-paleosol sediments of Kashmir Valley, India: provenance and weathering. J Asian Earth Sci 66:73–89

    Article  Google Scholar 

  • Alexakis D, Gotsis D, Giakoumakis S (2015) Evaluation of soil salinization in a Mediterranean site (Agoulinitsa district—West Greece). Arab J Geosci 8(3):1373–1383

    Article  Google Scholar 

  • Bai J, Xiao R, Cui B, Zhang K, Wang Q, Liu X et al (2011) Assessment of heavy metal pollution in wetland soils from the young and old reclaimed regions in the Pearl River Estuary, South China. Environ Pollut 159(3):817–824. doi:10.1016/j.envpol.2010.11.004

    Article  Google Scholar 

  • Banat KM, Howari FM, Al-Hamad AA (2005) Heavy metals in urban soils of central Jordan: should we worry about their environmental risks? Environ Res 97(3):258–273

    Article  Google Scholar 

  • Bhatt MP, Masuzawa T, Yamamoto M, Takeuchi N (2007) Chemical characteristics of pond waters within the debris area of Lirung Glacier in Nepal Himalaya. J Limn 66(2):71–80

    Article  Google Scholar 

  • Bhatt MP, Takeuchi N, Acevedo MF (2016) Chemistry of Supraglacial Ponds in the Debris-covered area of Lirung Glacier in Central Nepal Himalayas. Aquat Geochem 22(1):35–64

    Article  Google Scholar 

  • Bowen HJM (1979) Environmental chemistry of the elements. Academic, New York

    Google Scholar 

  • Caspari T, Bäumler R, Norbu C, Tshering K, Baillie I (2006) Geochemical investigation of soils developed in different lithologies in Bhutan, Eastern Himalayas. Geoderma 136(1–2):436–458. doi:10.1016/j.geoderma.2006.04.017

    Article  Google Scholar 

  • Dœlsch E, Van de Kerchove V, Saint Macary H (2006) Heavy metal content in soils of Réunion (Indian Ocean). Geoderma 134(1–2):119–134. doi:10.1016/j.geoderma.2005.09.003

    Article  Google Scholar 

  • Egashira K, Aramaki K, Yoshimasa M, Takeda A, Yamasaki S (2004) Rare earth elements and clay minerals of soils of the floodplains of three major rivers in Bangladesh. Geoderma 120(1–2):7–15. doi:10.1016/j.geoderma.2003.07.005

    Article  Google Scholar 

  • Gabrielli P, Barbante C, Turetta C, Marteel A, Boutron C, Cozzi G et al (2006) Direct determination of rare earth elements at the subpicogram per gram level in antarctic ice by ICP-SFMS using a desolvation system. Anal Chem 78(6):1883–1889

    Article  Google Scholar 

  • Gałuszka A, Migaszewski ZM, Dołęgowska S, Michalik A, Duczmal-Czernikiewicz A (2015) Geochemical background of potentially toxic trace elements in soils of the historic copper mining area: a case study from Miedzianka Mt., Holy Cross Mountains, south-central Poland. Environ Earth Sci 74(6):4589–4605

    Article  Google Scholar 

  • Guo G, Wu F, Xie F, Zhang R (2012) Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China. J Environ Sci-China 24(3):410–418

    Article  Google Scholar 

  • Haskin L, Haskin M, Frey F, Wildeman T (1968) Relative and absolute terrestrial abundances of the rare earths. Orig Distrib Elem 1:889–911

    Article  Google Scholar 

  • Huang X, Sillanpaa M, Duo B, Gjessing ET (2008) Water quality in the Tibetan Plateau: metal contents of four selected rivers. Environ Pollut 156(2):270–277. doi:10.1016/j.envpol.2008.02.014

    Article  Google Scholar 

  • Huang X, Sillanpaa M, Gjessing ET, Vogt RD (2009) Water quality in the Tibetan Plateau: major ions and trace elements in the headwaters of four major Asian rivers. Sci Total Environ 407(24):6242–6254. doi:10.1016/j.scitotenv.2009.09.001

    Article  Google Scholar 

  • Inger S, Harris N (1992) Tectonothermal evolution of the High Himalayan crystalline sequence, Langtang Valley, northern Nepal. J Metamorph Geol 10(3):439–452

    Article  Google Scholar 

  • Iqbal J, Shah MH (2011) Distribution, correlation and risk assessment of selected metals in urban soils from Islamabad, Pakistan. J Hazard Mater 192(2):887–898. doi:10.1016/j.jhazmat.2011.05.105

    Article  Google Scholar 

  • Jiang X, Lu WX, Zhao HQ, Yang QC, Yang ZP (2014) Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump. Nat Hazard Earth Sys 14(6):1599–1610

    Article  Google Scholar 

  • Kumar Sharma R, Agrawal M, Marshall F (2007) Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicol Environ Saf 66(2):258–266. doi:10.1016/j.ecoenv.2005.11.007

    Article  Google Scholar 

  • Li XD, Lee SL, Wong SC, Shi WZ, Thornton I (2004) The study of metal contamination in urban soils of Hong Kong using a GIS-based approach. Environ Pollut 129(1):113–124

    Article  Google Scholar 

  • Li C, Kang S, Wang X, Ajmone-Marsan F, Zhang Q (2008) Heavy metals and rare earth elements (REEs) in soil from the Nam Co Basin, Tibetan Plateau. Environ Geol 53(7):1433–1440. doi:10.1007/s00254-007-0752-4

    Article  Google Scholar 

  • Li C, Kang S, Zhang Q (2009) Elemental composition of Tibetan Plateau top soils and its effect on evaluating atmospheric pollution transport. Environ Pollut 157(8):2261–2265

    Article  Google Scholar 

  • Loell M, Reiher W, Felix-Henningsen P (2011) Contents and bioavailability of rare earth elements in agricultural soils in Hesse (Germany). J Plant Nutr Soil Sci 174(4):644–654. doi:10.1002/jpln.201000265

    Article  Google Scholar 

  • Micó C, Recatalá L, Peris M, Sánchez J (2006) Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere 65:863–872

    Article  Google Scholar 

  • Müller G (1969) Index of geoaccumulation in sediments of the Rhine River. Geol J 2(3):108–118

    Google Scholar 

  • Oliver M (1997) Soil and human health: a review. Eur J Soil Sci 48(4):573–592

    Article  Google Scholar 

  • Olmez I, Gordon GE (1985) Rare earths: atmospheric signatures for oil-fired power plants and refineries. Science 229(4717):966–968

    Article  Google Scholar 

  • Paudyal R, Kang S, Sharma C, Tripathee L, Huang J, Rupakheti D et al (2016) Major ions and trace elements of two selected rivers near Everest region, southern Himalayas, Nepal. Environ Earth Sci 75:46. doi:10.1007/s12665-015-4811-y

    Article  Google Scholar 

  • Razali N, Wah Y (2011) Power comparisons of Shapiro–Wilk, Kolmogorov–Smirnov, Lilliefors and Anderson–Darling tests. J Stat Model Anal 2(1):21–33

    Google Scholar 

  • Reimann C, Filzmoser P, Garrett R, Dutter R (2008) Statistical data analysis explained: applied environmental statistics with R. Wiley, New York

    Book  Google Scholar 

  • Riba I, DelValls T, Forja J, Gómez-Parra A (2002) Evaluating the heavy metal contamination in sediments from the Guadalquivir estuary after the Aznalcóllar mining spill (SW Spain): a multivariate analysis approach. Environ Monit Assess 77(2):191–207

    Article  Google Scholar 

  • Roy P, Smykatz-Kloss W (2007) REE geochemistry of the recent playa sediments from the Thar Desert, India: an implication to playa sediment provenance. Chem Erde-Geochem 67(1):55–68

    Article  Google Scholar 

  • Shapiro S, Wilk M (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3):591–611

    Article  Google Scholar 

  • Sharma CM, Kang S, Sillanpää M, Li Q, Zhang Q, Huang J et al (2015) Mercury and selected trace elements from a remote (Gosainkunda) and an urban (Phewa) Lake Waters of Nepal. Water Air Soil Poll. doi:10.1007/s11270-014-2276-3

    Google Scholar 

  • Sheng J, Wang X, Gong P, Tian L, Yao T (2012) Heavy metals of the Tibetan top soils: level, source, spatial distribution, temporal variation and risk assessment. Environ Sci Pollut Res Int 19(8):3362–3370. doi:10.1007/s11356-012-0857-5

    Article  Google Scholar 

  • Srinivasa Gowd S, Ramakrishna Reddy M, Govil PK (2010) Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. J Hazard Mater 174(1–3):113–121. doi:10.1016/j.jhazmat.2009.09.024

    Article  Google Scholar 

  • SD, Survey Department (1984) Land system map, central development region, Nepal. Topographical Survey Branch, Survey Department. Ministry of Land Reform, HMG, Kathmandu, Nepal

  • Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33(2):241–265

    Article  Google Scholar 

  • Tiller K (1989) Heavy metals in soils and their environmental significance. In: Stewart BA (ed) Advances in soil science. Springer, pp 113–142

  • Tripathee L, Kang S, Huang J, Sharma CM, Sillanpää M, Guo J et al (2014) Concentrations of trace elements in wet deposition over the central Himalayas, Nepal. Atmos Environ 95:231–238. doi:10.1016/j.atmosenv.2014.06.043

    Article  Google Scholar 

  • Vinogradov AP (1959) The geochemistry of rare and dispersed chemical elements in soils, 2nd edn. Consultants Bureau, New York

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Ac 59(7):1217–1232. doi:10.1016/0016-7037(95)00038-2

    Article  Google Scholar 

  • Yalcin MG, Ilhan S (2008) Multivariate analyses to determine the origin of potentially harmful heavy metals in beach and dune sediments from Kizkalesi coast (Mersin), Turkey. Bull Environ Contam Toxicol 81(1):57–68. doi:10.1007/s00128-008-9461-2

    Article  Google Scholar 

  • Yang Z, Lu W, Long Y, Bao X, Yang Q (2011) Assessment of heavy metals contamination in urban topsoil from Changchun City, China. J Geochem Explor 108(1):27–38. doi:10.1016/j.gexplo.2010.09.006

    Article  Google Scholar 

  • Yongming H, Peixuan D, Junji C, Posmentier ES (2006) Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci Total Environ 355(1–3):176–186. doi:10.1016/j.scitotenv.2005.02.026

    Article  Google Scholar 

  • Zhang XP, Deng W, Yang XM (2002) The background concentrations of 13 soil trace elements and their relationships to parent materials and vegetation in Xizang (Tibet), China. J Asian Earth Sci 21(2):167–174

    Article  Google Scholar 

  • Zhang Q, Kang S, Kaspari S, Li C, Qin D, Mayewski PA et al (2009) Rare earth elements in an ice core from Mt. Everest: seasonal variations and potential sources. Atmos Res 94(2):300–312. doi:10.1016/j.atmosres.2009.06.005

    Article  Google Scholar 

  • Zhang Q, Kang S, Li C, Chen F, Boukalova Z, Cerny I (2011) Assessment of elemental distribution and trace element contamination in surficial wetland sediments, Southern Tibetan Plateau. Environ Monit Assess 177(1–4):301–313. doi:10.1007/s10661-010-1635-9

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB03030504), the National Natural Science Foundation of China (41121001, 41225002) and Academy of Finland (264307). Lekhendra Tripathee is supported by Chinese Academy of Sciences, President’s International Fellowship Initiative (PIFI, Grant No: 2016PE007). The authors are grateful to Dr. Shaopeng Gao for his assistance in the laboratory work. We would like to appreciate and thank the Associate Editor and four anonymous reviewers for their valuable comments to improve our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shichang Kang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathee, L., Kang, S., Rupakheti, D. et al. Spatial distribution, sources and risk assessment of potentially toxic trace elements and rare earth elements in soils of the Langtang Himalaya, Nepal. Environ Earth Sci 75, 1332 (2016). https://doi.org/10.1007/s12665-016-6140-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6140-1

Keywords

Navigation