Environmental Earth Sciences

, 75:1349 | Cite as

Converting heterogeneous complex geological models to consistent finite element models: methods, development, and application to deep geothermal reservoir operation

  • Bo WangEmail author
  • Sebastian Bauer
Thematic Issue
Part of the following topical collections:
  1. Subsurface Energy Storage


Static geological models representing complex geological systems are the prerequisite of dynamic model simulations applied for assessing subsurface processes. The corner point grid approach has been applied to represent the complexity in geometry, hydraulic connectivity, and heterogeneity found in these static geological models. Due to the occurrence of faults, pinch-outs, and eroded geological layers, corner point grids easily degenerate, which leads to model inconsistencies. This study introduces a workflow for converting heterogeneous geological models to consistent finite element models, accounting for regular and irregular hexahedral blocks of the corner point grid by converting to a set of hexahedra, prism, pyramid, and tetrahedral elements, based on the individual degeneration situation. Heterogeneous geological data such as permeability or porosity can be transferred layer-wise or on a block-wise basis. Additionally, well trajectories can be accurately mapped to the converted finite element mesh, to place the corresponding source terms. The developed workflow is tested on dedicated test cases and applied to convert a real complex field site from the North German Basin for use in a deep geothermal reservoir operation. The field application demonstrates the robustness and applicability of the newly developed conversion workflow and the suitability of the converted mesh for dynamic finite element reservoir model simulations.


Static models Dynamic models Corner point grid Finite element mesh Geothermal reservoir operation ANGUS+ OpenGeoSys 



We gratefully acknowledge the funding of the ANGUS + joint project by the German Federal Ministry of Education and Research (BMBF) as part of the Energy Storage Funding Initiative, Grant Number 03EK3022, as well as the support of the Project Management Jülich (PTJ). We also thank Dr. Christof Beyer, Dr. Jens-Olaf Delfs, Dr. Alina Kabuth, and Johannes Nordbeck for all the great help and fruitful discussion. We would like to thank the anonymous reviewers for their time and effort, which have helped us to improve the manuscript.


  1. Aarnes JE, Krogstad S, Lie K-A (2008) Multiscale mixed/mimetic methods on corner-point grids. Comput Geosci 12:297–315. doi: 10.1007/s10596-007-9072-8 CrossRefGoogle Scholar
  2. Agemar T, Schellschmidt R, Schulz R (2012) Subsurface temperature distribution in Germany. Geothermics 44:65–77. doi: 10.1016/j.geothermics.2012.07.002 CrossRefGoogle Scholar
  3. Baldschuhn R, Binot F, Fleig S, Kockel F (2001) Geotektonischer Atlas von Nordwest-Deutschland und dem-deutschen Nordsee-Sektor. Schweizerbart Science Publishers, StuttgartGoogle Scholar
  4. Bauer S, Beyer C, Dethlefsen F, Dietrich P, Duttmann R, Ebert M, Feeser V, Görke U, Köber R, Kolditz O, Rabbel W, Schanz T, Schäfer D, Würdemann H, Dahmke A (2013) Impacts of the use of the geological subsurface for energy storage: an investigation concept. Environ Earth Sci 70:3935–3943. doi: 10.1007/s12665-013-2883-0 CrossRefGoogle Scholar
  5. Bauer S, Pfeiffer T, Boockmeyer A, Dahmke A, Beyer C (2015) Quantifying induced effects of subsurface renewable energy storage. Energy Procedia 76:633–641. doi: 10.1016/j.egypro.2015.07.885 CrossRefGoogle Scholar
  6. Bear J, Bachmat Y (1990) Introduction to modeling of transport phenomena in porous media. Kluwer, AA DordrechtCrossRefGoogle Scholar
  7. Benisch K, Bauer S (2013) Short- and long-term regional pressure build-up during CO2 injection and its applicability for site monitoring. Int J Greenh Gas Control 19:220–233. doi: 10.1016/j.ijggc.2013.09.002 CrossRefGoogle Scholar
  8. Benisch K, Köhn D, Al Hagrey S, Rabbel W, Bauer S (2014) A combined seismic and geoelectrical monitoring approach for CO2 storage using a synthetic field site. Environ Earth Sci 73:3077–3094. doi: 10.1007/s12665-014-3603-0 CrossRefGoogle Scholar
  9. Blöcher MG, Cacace M, Lewerenz B, Zimmermann G (2010a) Three dimensional modelling of fractured and faulted reservoirs: framework and implementation. Chemie der Erde Geochem 70:145–153. doi: 10.1016/j.chemer.2010.05.014 CrossRefGoogle Scholar
  10. Blöcher MG, Zimmermann G, Moeck I, Brandt W, Hassanzadegan A, Magri F (2010b) 3D numerical modeling of hydrothermal processes during the lifetime of a deep geothermal reservoir. Geofluids 10:406–421. doi: 10.1111/j.1468-8123.2010.00284.x CrossRefGoogle Scholar
  11. Boockmeyer A, Bauer S (2014) High-temperature heat storage in geological media: high-resolution simulation of near-borehole processes. Géotech Lett 4:151–156. doi: 10.1680/geolett.13.00060 CrossRefGoogle Scholar
  12. Busch K, Luckner L, Tiemer K (1993) Geohydraulik, Lehrbuch der Hydrogeologie. Gebrüder Borntraeger, BerlinGoogle Scholar
  13. Cacace M, Blöcher G (2015) MeshIt-a software for three dimensional volumetric meshing of complex faulted reservoirs. Environ Earth Sci 74:5191–5209. doi: 10.1007/s12665-015-4537-x CrossRefGoogle Scholar
  14. Diersch H-JG, Kolditz O (1998) Coupled groundwater flow and transport: 2. Thermohaline and 3D convection systems. Adv Water Resour 21:401–425. doi: 10.1016/S0309-1708(97)00003-1 CrossRefGoogle Scholar
  15. Doornenbal H, Stevenson A (2010) Petroleum geological atlas of the Southern Permian Basin area. EAGE, Houten, the NetherlandsGoogle Scholar
  16. Fischer T, Naumov D, Sattler S, Kolditz O, Walther M (2015) GO2OGS 1.0: a versatile workflow to integrate complex geological information with fault data into numerical simulation models. Geosci Model Dev 8:3681–3694. doi: 10.5194/gmd-8-3681-2015 CrossRefGoogle Scholar
  17. Franco A, Vaccaro M (2014) Numerical simulation of geothermal reservoirs for the sustainable design of energy plants: a review. Renew Sustain Energy Rev 30:987–1002. doi: 10.1016/j.rser.2013.11.041 CrossRefGoogle Scholar
  18. Freeze R, Cherry J (1979) Groundwater. Prentice-Hall Inc, New JerseyGoogle Scholar
  19. Fuchs S, Förster A (2010) Rock thermal conductivity of Mesozoic geothermal aquifers in the Northeast German Basin. Chemie der Erde - Geochem 70:13–22. doi: 10.1016/j.chemer.2010.05.010 CrossRefGoogle Scholar
  20. Graupner BJ, Li D, Bauer S (2011) The coupled simulator ECLIPSE–OpenGeoSys for the simulation of CO2 storage in saline formations. Energy Procedia 4:3794–3800. doi: 10.1016/j.egypro.2011.02.314 CrossRefGoogle Scholar
  21. Hese F (2011) Geologische 3D-modelle des Untergrundes Schleswig-Holsteins—ein Beitrag für Potenzialstudien zur Nutzung von tiefen salinen Aquiferen. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 162:389–404. doi: 10.1127/1860-1804/2011/0162-0389 CrossRefGoogle Scholar
  22. Hese F (2012) 3D Modellierungen und Visualisierung von Untergrundstrukturen für die Nutzung des unterirdischen Raumes in Schleswig-Holstein. Ph.D. Thesis, University of Kiel, GermanyGoogle Scholar
  23. Kalbacher T, Wang W, McDermott C, Kolditz O, Taniguchi T (2005) Development and application of a CAD interface for fractured rock. Environ Geol 47:1017–1027. doi: 10.1007/s00254-005-1236-z CrossRefGoogle Scholar
  24. Kalbacher T, Mettier R, McDermott C, Wang W, Kosakowski G, Taniguchi T, Kolditz O (2007) Geometric modelling and object-oriented software concepts applied to a heterogeneous fractured network from the Grimsel rock laboratory. Comput Geosci 11:9–26. doi: 10.1007/s10596-006-9032-8 CrossRefGoogle Scholar
  25. Kolditz O, Bauer S (2004) A process-oriented approach to computing multi-field problems in porous media. J Hydroinformatics 6:225–244Google Scholar
  26. Li D, Bauer S, Benisch K, Graupner B, Beyer C (2014) OpenGeoSys-ChemApp: a coupled simulator for reactive transport in multiphase systems and application to CO2 storage formation in Northern Germany. Acta Geotech 9:67–79. doi: 10.1007/s11440-013-0234-7 CrossRefGoogle Scholar
  27. Miles B, Kalbacher T, Kolditz O, Chen C, Gronewold J, Wang W, Peter A (2007) Development and parameterisation of a complex hydrogeological model based on high-resolution direct-push data. Environ Geol 52:1399–1412. doi: 10.1007/s00254-006-0582-9 CrossRefGoogle Scholar
  28. Mitiku AB, Li D, Bauer S, Beyer C (2013) Geochemical modelling of CO2–water–rock interactions in a potential storage formation of the North German sedimentary basin. Appl Geochem 36:168–186. doi: 10.1016/j.apgeochem.2013.06.008 CrossRefGoogle Scholar
  29. Mottaghy D, Pechnig R, Taugs R, Kröger J, Thomsen C, Hese F, Liebsch-Doerschner T (2010) Erstellung eines geothermischen Modells für Teile Hamburgs und anliegende Gebiete. BBR Jahresmagazin 52–59Google Scholar
  30. Neave JW (2007) Analysis and characterization of fault networks. Google PatentsGoogle Scholar
  31. Ni XD, Chen K (2014) Study on the conversion of GOCAD models to FLAC3D models. Appl Mech Mater 501–504:2527–2531CrossRefGoogle Scholar
  32. Pan L, Oldenburg CM, Pruess K, Wu Y-S (2011) Transient CO2 leakage and injection in wellbore-reservoir systems for geologic carbon sequestration. Greenh Gases Sci Technol 1:335–350. doi: 10.1002/ghg CrossRefGoogle Scholar
  33. Paradigm (2016) Paradigm GOCAD. Accessed 22 Feb 2016
  34. Park CH, Shinn YJ, Park YC, Huh DG, Lee SK (2014) PET2OGS: algorithms to link the static model of Petrel with the dynamic model of OpenGeoSys. Comput Geosci 62:95–102. doi: 10.1016/j.cageo.2013.09.014 CrossRefGoogle Scholar
  35. Pfeiffer WT, Bauer S (2015) Subsurface porous media hydrogen storage–scenario development and simulation. Energy Procedia 76:565–572. doi: 10.1016/j.egypro.2015.07.872 CrossRefGoogle Scholar
  36. Pfeiffer WT, Graupner B, Bauer S (2016) The coupled non-isothermal, multiphase-multicomponent flow and reactive transport simulator OpenGeoSys-Eclipse for porous media gas storage. Accessed at
  37. Ponting DK (1992) Corner point geometry in reservoir simulation. Math Oil Recover Inst Math its Appl. doi: 10.3997/2214-4609.201411305 Google Scholar
  38. Reinhold K, Müller C, Riesenberg C (2011) Informationssystem Speichergesteine für den Standort Deutschland-Synthese. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), BerlinGoogle Scholar
  39. Sa H, Kohn D, Ce W, Schafer D, Rabbel W (2014) Feasibility study for geophysical monitoring renewable gas energy compressed in pore storages. J Geol Geosci. doi: 10.4172/2329-6755.1000169 Google Scholar
  40. Scheer W (2001) Untersuchungsprogramm zur Ermittlung des nutzbaren Grundwasserdargebotes im schleswig-holsteinischen Nachbarraum zu Hamburg, Südost-Holstein.Abschlußbericht.Landesamt für Natur und Umwelt des Landes Schleswig-Holstein. Flintbek. 52 SGoogle Scholar
  41. Scheer W, Kröger J, Reinhard K (2007) Geologische 3-D-modellierung des untergrundes—Ergebnisse aus dem INTERREG IIIB-Projekt BurVal. Jahresbericht LANU, Schleswig-HolsteinGoogle Scholar
  42. Schlumberger (2013) 2013 Petrel structual modeling—training and Exercise Guide. SclumbergerGoogle Scholar
  43. Schlumberger (2014a) Petrel E&P Software Platform version 2014.6Google Scholar
  44. Schlumberger (2014b) Eclipse reservoir simulation software v2014.1—Technical Description Manual. Schlumberger LtdGoogle Scholar
  45. Souche L, Lepage F, Iskenova G (2013) Volume based modeling—automated construction of complex structural models. In: 75th EAGE Conf Exhib Inc SPE Eur 2013 London, UK, 10–13 June 2013 10–13. doi: 10.3997/2214-4609.20130037
  46. Stober I, Bucher K (2012) Geothermie. Springer, BerlinCrossRefGoogle Scholar
  47. Suchi E, Dittmann J, Knopf S, Müller C, Schulz R (2014) Geothermie-atlas zur Darstellung möglicher Nutzungskonkurrenzen zwischen CCS und Tiefer Geothermie in Deutschland. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 165:439–453. doi: 10.1127/1860-1804/2014/0070 CrossRefGoogle Scholar
  48. Vogt C, Iwanowski-Strahser K, Marquart G, Arnold J, Mottaghy D, Pechnig R, Gnjezda D, Clauser C (2013) Modeling contribution to risk assessment of thermal production power for geothermal reservoirs. Renew Energy 53:230–241. doi: 10.1016/j.renene.2012.11.026 CrossRefGoogle Scholar
  49. Wang W, Kosakowski G, Kolditz O (2009) A parallel finite element scheme for thermo-hydro-mechanical (THM) coupled problems in porous media. Comput Geosci 35:1631–1641. doi: 10.1016/j.cageo.2008.07.007 CrossRefGoogle Scholar
  50. Watanabe N, Wang W, McDermott CI, Taniguchi T, Kolditz O (2009) Uncertainty analysis of thermo-hydro-mechanical coupled processes in heterogeneous porous media. Comput Mech 45:263–280. doi: 10.1007/s00466-009-0445-9 CrossRefGoogle Scholar
  51. Yaws CL, Gomes J (2009) Transport properties of chemicals and hydrocarbons. William Andrew, New YorkGoogle Scholar
  52. Zehner B, Börner JH, Görz I, Spitzer K (2015) Workflows for generating tetrahedral meshes for finite element simulations on complex geological structures. Comput Geosci 79:105–117. doi: 10.1016/j.cageo.2015.02.009 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of GeosciencesUniversity of KielKielGermany

Personalised recommendations