Skip to main content

Advertisement

Log in

Assessment of vertical contamination of Cd, Pb and Zn in soils around a former ore smelter in Wallonia, Belgium

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Concentrations of trace elements (Cd, Co, Cr, Cu, Ni, Pb and Zn) and major elements (Ca, Mg, K, Fe, Al and Mn) as well as pHKCl and total organic carbon (TOC) were measured on 22 profiles located in a 3 km radius of a former ore treatment plant in Wallonia (Belgium). The enrichment factor (EF), vertical impoverishment factor (VIF) and availability ratio (AR) were used as diagnostic tools of contamination and migration of Cd, Pb and Zn in profiles. The data revealed that the soil profiles are significantly contaminated. The ranges of EFs for Cd (17–3570), Pb (1–2883) and Zn (2–309) are very broad with the higher EF in the topsoil of the profiles. VIFs of subhorizons are rarely above 1. In the few cases with VIF > 1, the main factor explaining is the soil type (in particular, Colluvic Regosols, Luvisols and Cambisols with shale load). Cd, Pb and Zn ARs are strongly correlated with TOC and to a lesser extent with pHKCl; Pb and Zn ARs are influenced by soil type, while land use only has an effect on Zn AR. The Cd availability is independent of these two factors. The contents of trace elements measured in soil profiles are very high, especially in topsoil. At present, the Cd, Pb and Zn vertical distribution shows a low migration from topsoil to deeper levels. However, we must not discount the hazard of a future potential transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baize D (1997) Un point sur… teneurs totales en éléments traces métalliques dans les sols (France). INRA edn, Paris

    Google Scholar 

  • Baize D, Sterckeman T (2001) Of the necessity of knowledge of the natural pedo-geochemical background content in the evaluation of the contamination of soils by trace elements. Sci Total Environ 264(1–2):127–139

    Article  Google Scholar 

  • Blaser P, Zimmermann S, Luster J, Shotyk W (2000) Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb, and Zn in Swiss forest soils. Sci Total Environ 249(1–3):257–280

    Article  Google Scholar 

  • Bock L, Bah B, Veron P, Lejeune P (2006) Carte des Principaux Types de Sols de Wallonie à 1/250 000. Unité Sol-Ecologie-Territoire (Laboratoire de Géopédologie) et Unité de Gestion des Ressources forestières et des Milieux naturels, Faculté universitaire des Sciences agronomiques de Gembloux, Gembloux, Belgium

  • Bourennane H, Douay F, Sterckeman T, Villanneau E, Ciesielski H, King D, Baize D (2010) Mapping of anthropogenic trace elements inputs in agricultural topsoil from Northern France using enrichment factors. Geoderma 157(3–4):165–174. doi:10.1016/j.geoderma.2010.04.009

    Article  Google Scholar 

  • Clemente R, Dickinson NM, Lepp NW (2008) Mobility of metals and metalloids in a multi-element contaminated soil 20 years after cessation of the pollution source activity. Environ Pollut 155(2):254–261. doi:10.1016/j.envpol.2007.11.024

    Article  Google Scholar 

  • Colinet G, Laroche J, Etienne M, Lacroix D, Bock L (2004) Intérêt d’une stratification pédologique pour la constitution de référentiels régionaux sur les teneurs en éléments traces métalliques dans les sols de Wallonie. Biotechnol Agron Soc Environ 8(2):83–94

    Google Scholar 

  • De Andrade Passos E, Alves JDPH, Garcia CAB, Costa ACS (2011) Metal fractionation in sediments of the Sergipe River, Northeast, Brazil. J Braz Chem Soc 22(5):828–835

    Google Scholar 

  • Douay F, Pruvot C, Roussel H, Ciesielski H, Fourrier H, Proix N, Waterlot C (2008) Contamination of urban soils in an area of Northern France polluted by dust emissions of two smelters. Water Air Soil Pollut 188(1–4):247–260

    Article  Google Scholar 

  • Dung TTT, Cappuyns V, Swennen R, Phung NK (2013) From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Rev Environ Sci Bio/Technol 12(4):335–353. doi:10.1007/s11157-013-9315-1

    Article  Google Scholar 

  • Genot V, Renneson M, Colinet G, Goffaux M-J, Cugnon T, Toussaint B, Buffet D, Oger R (2012) Base de données sols de REQUASUD: 3ème synthèse. Gembloux

  • Godin PM, Feinberg MH, Ducauze CJ (1985) Modelling of soil contamination by airborne lead and cadmium around several emission sources. Environ Pollut 10(2):97–114

    Article  Google Scholar 

  • Graitson E (2005) Inventaire et caractérisation des sites calaminaires en Région wallonne. Nat Mosana 58(4):83–124

    Google Scholar 

  • Graitson E, San Martin G, Goffart P (2005) Intérêt et particularités des haldes calaminaires wallonnes pour l’entomofaune: le cas des Lépidoptères Rhopalocères et des Orthoptères. Notes faunistiques de Gembloux 57:49–57

    Google Scholar 

  • He ZLL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19(2–3):125–140. doi:10.1016/j.jtemb.2005.02.010

    Article  Google Scholar 

  • Hernandez L, Probst A, Probst JL, Ulrich E (2003) Heavy metal distribution in some French forest soils: evidence for atmospheric contamination. Sci Total Environ 312(1–3):195–219

    Article  Google Scholar 

  • Hooda P (2010) Trace elements in soils. Wiley, New York

    Book  Google Scholar 

  • Khalil A, Hanich L, Bannari A, Zouhri L, Pourret O, Hakkou R (2013) Assessment of soil contamination around an abandoned mine in a semi-arid environment using geochemistry and geostatistics: pre-work of geochemical process modeling with numerical models. J Geochem Explor 125:117–129. doi:10.1016/j.gexplo.2012.11.018

    Article  Google Scholar 

  • Lakanen E, Erviö R (1971) A comparison of eight extractants for the determination of plant available micronutrients in soils. Acta Agralia Fennica 123:223–232

    Google Scholar 

  • Liénard A, Bock L, Colinet G (2011) Intérêt des cartes des sols pour l’élaboration d’une stratégie d’échantillonnage en sols contaminés par retombées atmosphériques: application à l’étude de l’effet sol sur le devenir des éléments traces métalliques. Biotechnol Agron Soc Environ 15(2):669–682

    Google Scholar 

  • Liénard A, Brostaux Y, Colinet G (2014) Soil contamination near a former Zn–Pb ore-treatment plant: evaluation of deterministic factors and spatial structures at the landscape scale. J Geochem Explor 147:107–116. doi:10.1016/j.gexplo.2014.07.014

    Article  Google Scholar 

  • Linde M, Öborn I, Gustafsson JP (2007) Effects of changed soil conditions on the mobility of trace metals in moderately contaminated urban soils. Water Air Soil Pollut 183(1–4):69–83. doi:10.1007/s11270-007-9357-5

    Article  Google Scholar 

  • Loska K, Wiechula D, Barska B, Cebula E, Chojnecka A (2003) Assessment of arsenic enrichment of cultivated soils in Southern Poland. Pol J Environ Stud 12(2):187–192

    Google Scholar 

  • Loska K, Wiechulła D, Korus I (2004) Metal contamination of farming soils affected by industry. Environ Int 30(2):159–165. doi:10.1016/S0160-4120(03)00157-0

    Article  Google Scholar 

  • Lu X, Li LY, Wang L, Lei K, Huang J, Zhai Y (2009a) Contamination assessment of mercury and arsenic in roadway dust from Baoji, China. Atmos Environ 43(15):2489–2496

    Article  Google Scholar 

  • Lu X, Wang L, Lei K, Huang J, Zhai Y (2009b) Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji, NW China. J Hazard Mater 161(2–3):1058–1062

    Article  Google Scholar 

  • Manta DS, Angelone M, Bellanca A, Neri R, Sprovieri M (2002) Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Sci Total Environ 300(1–3):229–243. doi:10.1016/S0048-9697(02)00273-5

    Article  Google Scholar 

  • Massas I, Ehaliotis C, Kalivas D, Panagopoulou G (2010) Concentrations and availability indicators of soil heavy metals; The case of children’s playgrounds in the city of Athens (Greece). Water Air Soil Pollut 212(1–4):51–63. doi:10.1007/s11270-009-0321-4

    Article  Google Scholar 

  • Massas I, Kalivas D, Ehaliotis C, Gasparatos D (2013) Total and available heavy metal concentrations in soils of the Thriassio plain (Greece) and assessment of soil pollution indexes. Environ Monit Assess 185(8):6751–6766. doi:10.1007/s10661-013-3062-1

    Article  Google Scholar 

  • McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosyst 2(4). doi:10.1029/2000GC000109

  • Ministère de la Région wallonne (2008) Décret du 5 décembre 2008 relatif à la gestion des sols. Moniteur belge du 18 février 2009 et 6 mars 2009

  • Myers J, Thorbjornsen K (2004) Identifying metals contamination in soil: a geochemical approach. Soil Sediment Contam 13(1):1–16. doi:10.1080/10588330490269732

    Article  Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: Sparks DL, Page AL, Helmke PA et al (eds) Methods of soil analysis part 3—chemical methods, vol sssabookseries, vol methodsofsoilan3. Soil Science Society of America Inc., Madison, pp 961–1010. doi:10.2136/sssabookser5.3.c34

    Google Scholar 

  • Othmani MA, Souissi F, Durães N, Abdelkader M, da Silva EF (2015) Assessment of metal pollution in a former mining area in the NW Tunisia: spatial distribution and fraction of Cd, Pb and Zn in soil. Environ Monit Assess. doi:10.1007/s10661-015-4734-9

    Google Scholar 

  • Ramos-Miras JJ, Roca-Perez L, Guzmán-Palomino M, Boluda R, Gil C (2011) Background levels and baseline values of available heavy metals in Mediterranean greenhouse soils (Spain). J Geochem Explor 110(2):186–192. doi:10.1016/j.gexplo.2011.05.009

    Article  Google Scholar 

  • Reimann C, De Caritat P (2000) Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environ Sci Technol 34(24):5084–5091

    Article  Google Scholar 

  • Reimann C, De Caritat P (2005) Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors. Sci Total Environ 337(1–3):91–107

    Article  Google Scholar 

  • Reimann C, Fabian K, Schilling J, Roberts D, Englmaier P (2015) A strong enrichment of potentially toxic elements (PTEs) in Nord-Trøndelag (central Norway) forest soil. Sci Total Environ 536:130–141. doi:10.1016/j.scitotenv.2015.07.032

    Article  Google Scholar 

  • Rosengarten D (2010) Les milieux calaminaires, la biodiversité au service du patrimoine. L’Erable 2:2–9

    Google Scholar 

  • Singh R, Singh DP, Kumar N, Bhargava SK, Barman SC (2010) Accumulation and translocation of heavy metals in soil and plants from fly ash contaminated area. J Environ Biol 31(4):421–430

    Google Scholar 

  • Soubrand-Colin M, Neel C, Bril H, Grosbois C, Caner L (2007) Geochernical behaviour of Ni, Cr, Cu, Zn and Pb in an Andosol–Cambisol climosequence on basaltic rocks in the French Massif Central. Geoderma 137(3–4):340–351. doi:10.1016/j.geoderma.2006.08.017

    Article  Google Scholar 

  • Sterckeman T, Douay F, Proix N, Fourrier H (2000) Vertical distribution of Cd, Pb and Zn in soils near smelters in the North of France. Environ Pollut 107(3):377–389

    Article  Google Scholar 

  • Sutherland RA (2000) Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ Geol 39(6):611–627

    Article  Google Scholar 

  • WRB (2014) World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. World soil resources reports no. 106. FAO, Rome

  • Yongming H, Peixuan D, Junji C, Posmentier ES (2006) Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci Total Environ 355(1–3):176–186. doi:10.1016/j.scitotenv.2005.02.026

    Article  Google Scholar 

  • Yuan G-L, Sun T-H, Han P, Li J (2013) Environmental geochemical mapping and multivariate geostatistical analysis of heavy metals in topsoils of a closed steel smelter: Capital Iron & Steel Factory, Beijing, China. J Geochem Explor 130:15–21. doi:10.1016/j.gexplo.2013.02.010

    Article  Google Scholar 

  • Zu Y, Bock L, Schvartz C, Colinet G, Li Y (2014) Mobility and distribution of lead, cadmium, copper and zinc in soil profiles in the peri-urban market garden of Kunming, Yunnan Province, China. Arch Agron Soil Sci 60(1):133–149

    Article  Google Scholar 

Download references

Acknowledgments

Elodie Boutique, Aziz Silini and the technical team of the Laboratory of Soil Science participated either in fieldwork, sample preparation or soil analyses and are thanked for their contribution to the project. We also extend our thanks to all of the farmers who allowed us to collect samples in their fields.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amandine Liénard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liénard, A., Colinet, G. Assessment of vertical contamination of Cd, Pb and Zn in soils around a former ore smelter in Wallonia, Belgium. Environ Earth Sci 75, 1322 (2016). https://doi.org/10.1007/s12665-016-6137-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6137-9

Keywords

Navigation