Skip to main content

Advertisement

Log in

Decision making under uncertainty in environmental projects using mathematical simulation modeling

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In decision-making processes, reliability and risk aversion play a decisive role. The aim of this study is to perform an uncertainty assessment of the effects of future scenarios of sustainable groundwater pumping strategies on the quantitative and chemical status of an aquifer. The good status of the aquifer is defined according to the terms established by the EU Water Framework Directive (WFD). A decision support systems (DSS) is presented, which makes use of a stochastic inverse model (GC method) and geostatistical approaches to calibrate equally likely realizations of hydraulic conductivity (K) fields for a particular case study. These K fields are conditional to available field data, including hard and soft information. Then, different future scenarios of groundwater pumping strategies are generated, based on historical information and WFD standards, and simulated for each one of the equally likely K fields. The future scenarios lead to different environmental impacts and levels of socioeconomic development of the region and, hence, to a different degree of acceptance among stakeholders. We have identified the different stakeholders implied in the decision-making process, the objectives pursued and the alternative actions that should be considered by stakeholders in a public participation project (PPP). The MonteCarlo simulation provides a highly effective way for uncertainty assessment and allows presenting the results in a simple and understandable way even for non-experts stakeholders. The methodology has been successfully applied to a real case study and lays the foundations to perform a PPP and stakeholders’ involvement in a decision-making process as required by the WFD. The results of the methodology can help the decision-making process to come up with the best policies and regulations for a groundwater system under uncertainty in groundwater parameters and management strategies and involving stakeholders with conflicting interests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arhonditsis GB, Perhar G, Zhang W, Massos E, Shi M, Das A (2008) Addressing equifinality and uncertainty in eutrophication models. Water Resour Res 44:W01420. doi:10.1029/2007WR005862

    Article  Google Scholar 

  • Capilla JE, Llopis-Albert C (2009) Gradual conditioning of non-gaussian transmissivity fields to flow and mass transport data. J Hydrol 371:66–74. doi:10.1016/j.jhydrol.2009.03.015

    Article  Google Scholar 

  • CHJ (Júcar Water Agency) (2016) Júcar river basin authority. http://www.chj.es/

  • CHS (Segura Water Agency) (2016) Segura river basin authority. http://www.chsegura.es/

  • Custodio E (2002) Aquifer overexploitation: what does it mean? Hydrogeol J 10:254–277

    Article  Google Scholar 

  • EC (2000). Directive 2000/60/EC of the European Parliament and of the Council of October 23 2000, establishing a framework for community action in the field of water policy. Official Journal of the European Communities L327/1eL327/72. 22.12.2000

  • EC (2006) Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration

  • Gómez-Hernández JJ, Srivastava RM (1990) ISIM3D: an ANSI-C three dimensional multiple indicator conditional simulation program. Comput Geosci 16(4):395–440

    Article  Google Scholar 

  • Harbaugh AW, Banta ER, Hill MC and McDonald MG (2000) MODFLOW- 2000, The US geological survey modular groundwater model-user guide to modularization concepts and the groundwater flow process. US Geol. Surv. Open-File Rep 00–92, 12

  • Hu LY (2000) Gradual deformation and iterative calibration of Gaussian related stochastic models. Math Geol 32(1):87–108

    Article  Google Scholar 

  • Jagelke J, Barthel R (2005) Conceptualization and implementation of a regional groundwater model for the Neckar catchment in the framework of an integrated regional model. Adv Geosci 5:105–111

    Article  Google Scholar 

  • Llopis-Albert C (2008) Stochastic inverse modeling conditional to flow, mass transport and secondary information. Universitat Politècnica de València, València. ISBN 978-84-691-9796-7

    Google Scholar 

  • Llopis-Albert C, Capilla JE (2009a) Gradual conditioning of non-gaussian transmissivity fields to flow and mass transport data. Demonstration on a synthetic aquifer. J Hydrol 371:53–55. doi:10.1016/j.jhydrol.2009.03.014

    Article  Google Scholar 

  • Llopis-Albert C, Capilla JE (2009b) Gradual conditioning of non-gaussian transmissivity fields to flow and mass transport data. Application to the macrodispersion experiment (MADE-2) site, on Columbus air force base in Mississippi (USA). J Hydrol 371:75–84. doi:10.1016/j.jhydrol.2009.03.016

    Article  Google Scholar 

  • Llopis-Albert C, Capilla JE (2010a) Stochastic simulation of non-gaussian 3D conductivity fields in a fractured medium with multiple statistical populations: a case study. J Hydrol Eng 15(7):554–566. doi:10.1061/(ASCE)HE.1943-5584.0000214

    Article  Google Scholar 

  • Llopis-Albert C, Capilla JE (2010b) Stochastic inverse modeling of hydraulic conductivity fields taking into account independent stochastic structures: a 3D case study. J Hydrol 391:277–288. doi:10.1016/j.jhydrol.2010.07.028

    Article  Google Scholar 

  • Llopis-Albert C, Pulido-Velazquez D (2014) Discussion about the validity of sharp-interface models to deal with seawater intrusion in coastal aquifers. Hydrol Process 28(10):3642–3654

    Article  Google Scholar 

  • Llopis-Albert C, Pulido-Velazquez D (2015) Using MODFLOW code to approach transient hydraulic head with a sharp-interface solution. Hydrol Process 29(8):2052–2064. doi:10.1002/hyp.10354

    Article  Google Scholar 

  • Llopis-Albert C, Palacios-Marqués D, Merigó JM (2014) A coupled stochastic inverse-management framework for dealing with nonpoint agriculture pollution under groundwater parameter uncertainty. J Hydrol 511:10–16. doi:10.1016/j.jhydrol.2014.01.021

    Article  Google Scholar 

  • Llopis-Albert C, Merigó JM, Palacios-Marqués D (2015) Structure adaptation in stochastic inverse methods for integrating information. Water Resour Manage 29(1):95–107. doi:10.1007/s11269-014-0829-2

    Article  Google Scholar 

  • Llopis-Albert C, Merigó JM, Xu Y (2016) A coupled stochastic inverse/sharp interface seawater intrusion approach for coastal aquifers under groundwater parameter uncertainty. J Hydrol 540:774–783. doi:10.1016/j.jhydrol.2016.06.065

    Article  Google Scholar 

  • McDonald MG and Harbaugh AW (1988) A modular three-dimensional finite-difference groundwater flow model. US geological survey technical manual of water resources investigation, Book 6, US geological survey, Reston, Virginia, 586

  • Molina JL, Pulido-Velazquez M, Llopis-Albert C, Peña-Haro S (2013) Stochastic hydro-economic model for groundwater quality management using Bayesian networks. Water Sci Technol 67(3):579–586. doi:10.2166/wst.2012.598

    Article  Google Scholar 

  • Peña-Haro S, Llopis-Albert C, Pulido-Velazquez M (2010) Fertilizer standards for controlling groundwater nitrate pollution from agriculture: El Salobral-Los Llanos case study, Spain. J Hydrol 392:174–187. doi:10.1016/j.jhydrol.2010.08.006

    Article  Google Scholar 

  • Peña-Haro S, Pulido-Velazquez M, Llopis-Albert C (2011) Stochastic hydro-economic modeling for optimal management of agricultural groundwater nitrate pollution under hydraulic conductivity uncertainty. Environ Model Softw 26(8):999–1008. doi:10.1016/j.envsoft.2011.02.010

    Article  Google Scholar 

  • Pulido-Velazquez D, Llopis-Albert C, Peña-Haro S, Pulido-Velazquez M (2011) Efficient conceptual model for simulating the effect of aquifer heterogeneity on natural groundwater discharge to rivers. Adv Water Resour 34(11):1377–1389. doi:10.1016/j.advwatres.2011.07.010

    Article  Google Scholar 

  • Reichert P, Borsuk M, Hostmann M, Schweizer S, Spörri C, Tockner K, Truffer B (2005) Concepts of decision support for river rehabilitation. Environ Model Softw 22:188–201

    Article  Google Scholar 

  • Wright SAL, Fritsch O (2011) Operationalising active involvement in the EU water framework directive: why, when and how? Ecol Econ 70(12):2268–2274

    Article  Google Scholar 

  • Zhou H, Gómez-Hernández JJ, Li L (2014) Inverse methods in hydrogeology: evolution and recent trends. Adv Water Resour 63:22–37. doi:10.1016/j.advwatres.2013.10.014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Llopis-Albert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llopis-Albert, C., Palacios-Marqués, D. & Merigó, J.M. Decision making under uncertainty in environmental projects using mathematical simulation modeling. Environ Earth Sci 75, 1320 (2016). https://doi.org/10.1007/s12665-016-6135-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6135-y

Keywords

Navigation