Skip to main content
Log in

Model parameter transfer for streamflow and sediment loss prediction with SWAT in a tropical watershed

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Distributed hydrological models are increasingly used to describe the spatiotemporal dynamics of water and sediment fluxes within basins. In data-scarce regions like Ethiopia, oftentimes, discharge or sediment load data are not readily available and therefore researchers have to rely on input data from global models with lower resolution and accuracy. In this study, we evaluated a model parameter transfer from a 100 hectare (ha) large subwatershed (Minchet) to a 4800 ha catchment in the highlands of Ethiopia using the Soil and Water Assessment Tool (SWAT). The Minchet catchment has long-lasting time series on discharge and sediment load dating back to 1984, which were used to calibrate the subcatchment before (a) validating the Minchet subcatchment and (b) through parameter transfer validating the entire Gerda watershed without prior calibration. Uncertainty analysis was carried out with the Sequential Uncertainty Fitting-2 (SUFI-2) with SWAT-Cup and ArcSWAT2012. We used a similarity approach, where the complete set of model parameters is transposed from a donor catchment that is very similar regarding physiographic attributes (in terms of landuse, soils, geology and rainfall patterns). For calibration and validation, the Nash-Sutcliff model efficiency, the Root Mean Square Error-observations Standard Deviation Ratio (RSR) and the Percent Bias (PBIAS) indicator for model performance ratings during calibration and validation periods were applied. Goodness of fit and the degree to which the calibrated model accounted for the uncertainties were assessed with the P-factor and the R-factor of the SUFI-2 algorithm. Results show that calibration and validation for streamflow performed very good for the subcatchment as well as for the entire catchment using model parameter transfer. For sediment loads, calibration performed better than validation and parameter transfer yielded satisfactory results, which suggests that the SWAT model can be used to adequately simulate monthly streamflow and sediment load in the Gerda catchment through model parameter transfer only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbaspour KC, Vejdani M, Haghighat S, Yang J (2007a) SWAT-CUP Calibration and Uncertainty Programs for SWAT. In: The Fourth International SWAT Conference. Delft, pp 1596–1602

  • Abbaspour KC, Yang J, Maximov I, Siber R, Bogner K, Mieleitner J, Zobrist J, Srinivasan R (2007b) Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J Hydrol 333(2–4):413–430. doi:10.1016/j.jhydrol.2006.09.014

    Article  Google Scholar 

  • Abbaspour KC (2015) SWAT-CUP 2012: SWAT calibration and uncertainty programs-A user manual

  • Abbaspour KC, Rouholahnejad E, Vaghefi S, Srinivasan R, Yang H, Kløve B (2015) A continental-scale hydrology and water quality model for Europe: calibration and uncertainty of a high-resolution large-scale SWAT model. J Hydrol 752:733–752. doi:10.1016/j.jhydrol.2015.03.027

    Article  Google Scholar 

  • Arnold JG, Moriasi DN, Gassman PW, Abbaspour KC, White MJ, Srinivasan R, Santhi C, Harmel RD, Van Griensven A, Van Liew MW, Kannan N, Jha MK (2012) SWAT: model use, calibration and validation. Trans ASABE 55(4):1491–1508

    Article  Google Scholar 

  • Belay G (2014) Gerda watershed soil report. Tech. Rep, February, Water and Land Resource Centre (WLRC), Addis Abeba, Addis Abeba

  • Betrie GD, Ya Mohamed, van Griensven A, Srinivasan R (2011) Sediment management modelling in the Blue Nile Basin using SWAT model. Hydrol Earth Syst Sci 15(3):807–818. doi:10.5194/hess-15-807-2011

    Article  Google Scholar 

  • Beven K (1993) Prophecy, reality and uncertainty in distributed hydrological modelling. Adv Water Resour 16(1):41–51. doi:10.1016/0309-1708(93)90028-E

    Article  Google Scholar 

  • Bingner R, Garbrecht J, Arnold J, Srinivasan R (1997) Effect of watershed subdivision on simulation runoff and fine sediment yield. Trans Am Soc Agric Eng 40(5):1329–1335

    Article  Google Scholar 

  • Bosshardt U (1997) Catchment discharge and suspended sediment transport as indicators of physical soil and water conservation in the Minchet catchment. Anjeni Research Unit, Soil Conservation Research Programme, Bern

  • Chaubey I, Chiang L, Gitau MW, Mohamed S (2010) Effectiveness of best management practices in improving water quality in a pasture-dominated watershed. J Soil Water Conserv 65(6):424–437. doi:10.2489/jswc.65.6.424

    Article  Google Scholar 

  • Dile YT, Srinivasan R (2014) Evaluation of CFSR climate data for hydrologic prediction in data-scarce watersheds: an application in the Blue Nile River Basin. JAWRA J Am Water Resour Assoc 50(5):1226–1241. doi:10.1111/jawr.12182

    Article  Google Scholar 

  • Douglas-Mankin KR, Daggupati P, Sheshukov AY, Barnes PL (2013) Paying for sediment: field-scale conservation practice targeting, funding, and assessment using the soil and water assessment tool. J Soil Water Conserv 68(1):41–51. doi:10.2489/jswc.68.1.41

    Article  Google Scholar 

  • Easton ZM, Fuka DR, White ED, Collick AS, Biruk Ashagre B, McCartney M, Awulachew SB, Ahmed AA, Steenhuis TS (2010) A multi basin SWAT model analysis of runoff and sedimentation in the Blue Nile. Ethiopia. Hydrol Earth Syst Sci 14(10):1827–1841. doi:10.5194/hess-14-1827-2010, http://www.hydrol-earth-syst-sci.net/14/1827/2010/

  • Faramarzi M, Abbaspour KC, Ashraf Vaghefi S, Farzaneh MR, Zehnder AJB, Srinivasan R, Yang H (2013) Modeling impacts of climate change on freshwater availability in Africa. J Hydrol 480:85–101. doi:10.1016/j.jhydrol.2012.12.016

    Article  Google Scholar 

  • Guzman CD, Tilahun SA, Zegeye AD, Steenhuis TS (2013) Suspended sediment concentrationdischarge relationships in the (sub-) humid Ethiopian highlands. Hydrol Earth Syst Sci 17(3):1067–1077. doi:10.5194/hess-17-1067-2013

    Article  Google Scholar 

  • Haddeland I (2002) Influence of spatial resolution on simulated streamflow in a macroscale hydrologic model. Water Resour Res 38(7):1–10. doi:10.1029/2001WR000854

    Article  Google Scholar 

  • Hargreaves GH, Za Samani (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–99. doi:10.13031/2013.26773

    Article  Google Scholar 

  • He Y, Bárdossy A, Zehe E (2011) A review of regionalisation for continuous streamflow simulation. Hydrol Earth Syst Sci 15(11):3539–3553. doi:10.5194/hess-15-3539-2011

    Article  Google Scholar 

  • Hurni H (1985) Erosion—productivity— conservation systems in Ethiopia. In: Pla Sentis I (ed) Pla Sentis, 1. (Edt.), Maracay, Venezuela, vol 674, pp 654–674

  • Kejela K (1995) The soils of the Anjeni area—Gojam Research Unit, Ethiopia, research, r edn. University of Bern, Bern

    Google Scholar 

  • Kokkonen TS, Jakeman AJ, Young PC, Koivusalo HJ (2003) Predicting daily flows in ungauged catchments: model regionalization from catchment descriptors at the Coweeta Hydrologic Laboratory, North Carolina. Hydrol Process 17(11):2219–2238. doi:10.1002/hyp.1329

    Article  Google Scholar 

  • Kumar R, Samaniego L, Attinger S (2013) Implications of distributed hydrologic model parameterization on water fluxes at multiple scales and locations. Water Resour Res 49(1):360–379. doi:10.1029/2012WR012195

    Article  Google Scholar 

  • Lemann T, Zeleke G, Amsler C, Giovanoli L, Suter H, Roth V (2016) Modelling the effect of soil and water conservation on discharge and sediment yield in the upper Blue Nile basin, Ethiopia. Appl Geogr 73:89–101. doi:10.1016/j.apgeog.2016.06.008

    Article  Google Scholar 

  • Liang X, Guo J, Leung LR (2004) Assessment of the effects of spatial resolutions on daily water flux simulations. J Hydrol 298:287–310. doi:10.1016/j.jhydrol.2003.07.007

    Article  Google Scholar 

  • Ludi E (2004) Economic analysis of soil conservation. Phd thesis, University of Bern, Switzerland

  • McIntyre N (2004) Analysis of uncertainty in river water quality modelling. PhD diss London, England: University of London, p 224, http://www3.imperial.ac.uk/pls/portallive/docs/1/7253966.PDF

  • Mekonnen MA, Anders W, Dargahi B, Gebeyehu A (2009) Hydrological modelling of Ethiopian catchments using limited data. Hydrol Process 23:3401–3408. doi:10.1002/hyp.7470

    Article  Google Scholar 

  • Merz R, Blöschl G (2004) Regionalisation of catchment model parameters. J Hydrol 287(1–4):95–123. doi:10.1016/j.jhydrol.2003.09.028

    Article  Google Scholar 

  • Moriasi DN, Arnold JG, Liew MWV, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Am Soc Agric Biol Eng 50(3):885–900

    Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models: Part 1. A discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Ndomba PM, Mtalo FW, Killingtveit Å (2008) A guided SWAT model application on sediment yield modeling in Pangani river basin: lessons learnt. J Urban Environ Eng 2:53–62. doi:10.4090/juee.2008.v2n2.053062

    Article  Google Scholar 

  • Neitsch S, Arnold J, Kiniry J, Williams J (2011) Soil & water assessment tool theoretical documentation version 2009. Tech. rep, Texas Water Resources Institute, College Station, Texas

  • Notter B, Hurni H, Wiesmann U, Abbaspour KC (2012) Modelling water provision as an ecosystem service in a large East African river basin. Hydrol Earth Syst Sci 16(1):69–86. doi:10.5194/hess-16-69-2012

    Article  Google Scholar 

  • Parajka J, Merz R, Blöschl G (2005) A comparison of regionalisation methods for catchment model parameters. Hydrol Earth Syst Sci Discuss 2(2):509–542. doi:10.5194/hessd-2-509-2005

    Article  Google Scholar 

  • Parajuli PB, Nelson NO, Frees LD, Mankin KR (2009) Comparison of AnnAGNPS and SWAT model simulation results in USDA-CEAP agricultural watersheds in south-central Kansas. Hydrol Process 23(5):748–763. doi:10.1002/hyp.7174

    Article  Google Scholar 

  • Roth V (2010) Abfluss- und Erosionsmodellierung im Hochland von Äthiopien. Master thesis, University of Bern, Switzerland

  • Samaniego L, Kumar R, Attinger S (2010) Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour Res. doi:10.1029/2008WR007327

  • Santhi C, Arnold JG, Williams JR, Dugas WA, Srinivasan R, Hauck LM (2001) Validation of the SWAT model on a large river basin with point and nonpoint sources. J Am Water Resour Assoc (JAWRA) 37(5):1169–1188

    Article  Google Scholar 

  • Schuol J, Abbaspour KC, Srinivasan R, Yang H (2008) Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model. J Hydrol 352(1–2):30–49. doi:10.1016/j.jhydrol.2007.12.025

    Article  Google Scholar 

  • SCRP (2000) Area of Anjeni, Gojam, Ethiopia: long-term monitoring of the agricultural environment 1984–1994. Tech. rep, Centre for Development and Environment (CDE), Addis Abeba

  • Seo M, Yen H, Kim MK, Jeong J (2014) Transferability of SWAT models between SWAT2009 and SWAT2012. J Environ Qual 43(3):869. doi:10.2134/jeq2013.11.0450

    Article  Google Scholar 

  • Setegn SG, Dargahi B, Srinivasan R, Melesse AM (2010) Modeling of sediment yield from Anjeni-gauged watershed, Ethiopia using SWAT model. J Am Water Resour Assoc (JAWRA) 46(3):514–526

    Google Scholar 

  • Sheshukov AY, Daggupati P, Douglas-Mankin KR, Lee MC (2011) High spatial resolution soil data for watershed modeling: 1. Development of a SSURGO-ArcSWAT utility. J Nat & Environ Sci 2(2):15–24

    Google Scholar 

  • Singh SK, Bárdossy A, Götzinger J, Sudheer KP (2012) Effect of spatial resolution on regionalization of hydrological model parameters. Hydrol Process 26(23):3499–3509. doi:10.1002/hyp.8424

    Article  Google Scholar 

  • Smith MB, Koren V, Zhang Z, Zhang Y, Reed SM, Cui Z, Moreda F, Ba Cosgrove, Mizukami N, Ea Anderson (2012) Results of the DMIP 2 Oklahoma experiments. J Hydrol 418–419:17–48. doi:10.1016/j.jhydrol.2011.08.056

    Article  Google Scholar 

  • Talebizadeh M, Morid S, Ayyoubzadeh SA, Ghasemzadeh M (2010) Uncertainty analysis in sediment load modeling using ANN and SWAT model. Water Resour Manag 24:1747–1761. doi:10.1007/s11269-009-9522-2

    Article  Google Scholar 

  • Temesgen M, Rockström J, Savenije HHG, Hoogmoed WB, Alemu D (2008) Determinants of tillage frequency among smallholder farmers in two semi-arid areas in Ethiopia. Phys Chem Earth 33:183–191. doi:10.1016/j.pce.2007.04.012

    Article  Google Scholar 

  • USDA-SCS (1972) Design hydrographs. In: National engineering handbook, USDA Soil Conservation Service, Washington DC, chap 1–22, p 824

  • Van Liew MW, Garbrecht J (2003) Hydrologic simulation of the Little Washita River experimental watershed using SWAT. J Am Water Resour Assoc 39(2):413–426. doi:10.1111/j.1752-1688.2003.tb04395.x

    Article  Google Scholar 

  • Vandewiele G, Elias A (1995) Monthly water balance of ungauged catchments obtained by geographical regionalization. J Hydrol 170(1–4):277–291. doi:10.1016/0022-1694(95)02681-E

    Article  Google Scholar 

  • Williams JR (1969) Flood routing with variable travel time or variable storage coefficients. Trans ASABE 12(1):100–103

    Article  Google Scholar 

  • WLRC (2016) Water and land resources information system (WALRIS). http://walris.wlrc-eth.org/

  • Yesuf HM, Melesse AM, Zeleke G, Alamirew T (2016) Streamflow prediction uncertainty analysis and verification of SWAT model in a tropical watershed. Environ Earth Sci 75(9):806. doi:10.1007/s12665-016-5636-z

    Article  Google Scholar 

  • Zeleke G (2000) Landscape dynamics and soil erosion process modeling in the North-Western Ethiopian highlands. Phd thesis, University of Bern, Swizterland

  • Zhang X, Srinivasan R, Liew MV (2008) Multi-site calibration of the SWAT model for hydrologic modeling. Trans ASABE 51(2007):2039–2049

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Centre for Development and Environment and the Institute of Geography, University of Bern, Switzerland. We are grateful to the Water and Land Resource Centre, Addis Abeba, Ethiopia, for providing data and support for field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Roth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roth, V., Nigussie, T.K. & Lemann, T. Model parameter transfer for streamflow and sediment loss prediction with SWAT in a tropical watershed. Environ Earth Sci 75, 1321 (2016). https://doi.org/10.1007/s12665-016-6129-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6129-9

Keywords

Navigation