Skip to main content

Advertisement

Log in

Geochemical characteristics of lake clay drilled in well QZ-4: its implication for geochemical response to climate change in the central Tibetan Plateau in the Middle–Late Pleistocene

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

A colour sequence, which is composed of a yellow subsequence in the lower unit and a grey subsequence in the upper unit, is an important climate archive for the central Tibetan Plateau in the Middle–Late Pleistocene. However, little study has been done on it. In well QZ-4, this colour sequence is thicker than 116 m, which is an important climate archive for the central Tibetan Plateau in the Middle–Late Pleistocene. In this work, the ESR dating and geochemistry analysis have been carried out to provide a preliminary insight into the paleo-climate change in the central Tibetan Plateau. It can be concluded that the 23.56 ka (125.96–149.52 ka BP) time interval, which is marked by the angular unconformity surface at 272.48 m in depth, proves that the deposition of this colour sequence is dominated by Gonghe Movement. After this movement, chemical weathering is reduced; however, the sedimentation rate is increased from 0.18 to 3.5 m/ka. In the central Tibetan Plateau, the climate became colder and drier in the Middle–Late Pleistocene, which is roughly consistent with global paleo-climate change at that time. All these changes are correlated with the change of elevation and atmospheric circulation in the Tibetan Plateau and its surrounding area, which are driven by the tectonic uplift of Gonghe Movement. The Gonghe Movement is likely a driving force for the short-lived spike at about 120 ka.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • An Z (2000) The history and variability of the East Asian paleomonsoon climate. Quat Sci Rev 19:171–187

    Article  Google Scholar 

  • Chen F, Yu Z, Yang M, Ito E, Wang S, Madsen DB, Huang X, Zhao Y, Sato T, Birks HJB, Boomer I, Chen J, An C, Wünnemann B (2008) Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat Sci Rev 27:351–364

    Article  Google Scholar 

  • Chen L, Zhang G, Jin Z (2014) Rare earth elements of a 1000-year paddy soil chronosequence: implications for sediment provenances, parent material uniformity and pedological changes. Geoderma 230:274–279

    Article  Google Scholar 

  • Cullers RL (1994) The chemical signature of source rocks in size fractions of Holocene stream sediment derived from metamorphic rocks in the wet mountains region, Colorado, USA. Chem Geol 113(3):327–343

    Article  Google Scholar 

  • Dahl-Jensen D, Albert MR, Aldahan A, Azuma N, Balslev-Clausen D, Baumgartner M, Berggren A-M, Bigler M, Binder T, Blunier T (2013) Eemian interglacial reconstructed from a Greenland folded ice core. Nature 493(7433):489–494

    Article  Google Scholar 

  • Derbyshire E, Shi Y, Li J, Zheng B, Li S, Wang J (1991) Quaternary glaciation of Tibet: the geological evidence. Quat Sci Rev 10(6):485–510

    Article  Google Scholar 

  • Fagel N, Not C, Gueibe J, Mattielli N, Bazhenova E (2013) Late Quaternary evolution of sediment provenances in the Central Arctic Ocean: mineral assemblage, trace element composition and Nd and Pb isotope fingerprints of detrital fraction from the Northern Mendewleev Ridge. Quat Sci Rev 92:140–154

    Article  Google Scholar 

  • Fu X, Wang J, Zeng Y, Tan F, He J (2011) Geochemistry and origin of rare earth elements (REEs) in the Shengli River oil shale, northern Tibet, China. Chem Erde 71(1):21–30

    Article  Google Scholar 

  • Gabrielli P, Hardy D, Kehrwald N, Davis M, Cozzi G, Turetta C, Barbante C, Thompson L (2014) Deglaciated areas of Kilimanjaro as a source of volcanic trace elements deposited on the ice cap during the late Holocene. Quat Sci Rev 93:1–10

    Article  Google Scholar 

  • Guo S, Wu B, Lu H (1994) The geochemistry research on polymetallic nodule and sediment. Geological Publishing House, Beijing

    Google Scholar 

  • Han W, Fang X, Berger A (2012) Tibet forcing of mid-Pleistocene synchronous enhancement of East Asian winter and summer monsoons revealed by Chinese loess record. Quat Res 78(2):174–184

    Article  Google Scholar 

  • Hao Y, Cao B, Zhang P, Wang Q, Li Z, T-cJ Yeh (2012) Differences in karst processes between northern and southern China. Carbonates Evaporites 27(3–4):331–342

    Article  Google Scholar 

  • Haskin LA, Wildeman TR, Haskin MA (1968) An accurate procedure for the determination of the rare earths by neutron activation. J Radioanal Chem 4(1):337–348. doi:10.1007/BF02513689

    Article  Google Scholar 

  • He J, Wang J, Fu X, Zheng C, Chen Y (2012) Assessing the conditions favorable for the occurrence of gas hydrate in the Tuonamu area Qiangtang basin, Qinghai–Tibetan, China. Energy Convers Manag 53(1):11–18

    Article  Google Scholar 

  • Herb C, Koutsodendris A, Zhang W, Appel E, Fang X, Voigt S, Pross J (2015) Late Plio-Pleistocene humidity fluctuations in the western Qaidam Basin (NE Tibetan Plateau) revealed by an integrated magnetic–palynological record from lacustrine sediments. Quat Res 84(3):457–466

    Article  Google Scholar 

  • Hong Z (2008) Object identification based on multi-remote sensing images in the lacking area of 1:50000 topographic map of Tibetan Plateau. Beijing

  • Hou J, D’Andrea WJ, Liu Z (2012) The influence of 14C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau. Quat Sci Rev 48:67–79

    Article  Google Scholar 

  • Kasanzu C, Maboko MA, Manya S (2008) Geochemistry of fine-grained clastic sedimentary rocks of the Neoproterozoic Ikorongo Group, NE Tanzania: Implications for provenance and source rock weathering. Precambrian Res 164(3):201–213. doi:10.1016/j.precamres.2008.04.007

    Article  Google Scholar 

  • Kasper T, Haberzettl T, Doberschütz S, Daut G, Wang J, Zhu L, Nowaczyk N, Mäusbacher R (2012) Indian Ocean Summer Monsoon (IOSM)-dynamics within the past 4 ka recorded in the sediments of Lake Nam Co, central Tibetan Plateau (China). Quat Sci Rev 39:73–85

    Article  Google Scholar 

  • Li J (1991) The environmental effects of the uplift of the Qinghai-Xizang Plateau. Quat Sci Rev 10(6):479–483

    Article  Google Scholar 

  • Li S, Zhang H, Shi Y, Zhu Z (2008) A high resolution MIS 3 environmental change record derived from lacustrine depostit of Tianshuihai lake, Qinghai–Tibet Plateau. Quat Sci 28(1):122–131

    Google Scholar 

  • Li M, Zhu L, Wang J, Wang L, Yi C, Galy A (2011) Multiple implications of rare earth elements for Holocene environmental changes in Nam Co, Tibet. Quat Int 236(1):96–106

    Article  Google Scholar 

  • Li Z, Sun D, Chen F, Wang F, Zhang Y, Guo F, Wang X, Li B (2014) Chronology and paleoenvironmental records of a drill core in the central Tengger Desert of China. Quat Sci Rev 85:85–98

    Article  Google Scholar 

  • Licht A, Van Cappelle M, Abels H, Ladant J-B, Trabucho-Alexandre J, France-Lanord C, Donnadieu Y, Vandenberghe J, Rigaudier T, Lécuyer C (2014) Asian monsoons in a late Eocene greenhouse world. Nature 513(7519):501–506

    Article  Google Scholar 

  • Liu H, Xu B, Cui H (2002) Holocene history of desertification along the woodland-steppe border in northern China. Quat Res 57(2):259–270

    Article  Google Scholar 

  • Liu D, Fang X, Song C, Dai S, Zhang T, Zhang W, Miao Y, Liu Y, Wang J (2010) Stratigraphic and paleomagnetic evidence of mid-Pleistocene rapid deformation and uplift of the NE Tibetan Plateau. Tectonophysics 486(1):108–119

    Article  Google Scholar 

  • Liu B, Jin H, Sun Z, Su Z, Zhang C (2012) Geochemical characteristics of aeolian deposits in Gonghe Basin, northeastern Qinghai Tibetan Plateau and the indicating climatic changes. Adv Earth Sci 27(7):788–799

    Google Scholar 

  • Meintzer RE, Mitchell RS (1988) The epigene alteration of allanite. Can Mineral 26:945–955

    Google Scholar 

  • Nesbitt H, Young G (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299(5885):715–717

    Article  Google Scholar 

  • Patrick D, Martin JE, Parris D, Grandstaff D (2004) Paleoenvironmental interpretations of rare earth element signatures in mosasaurs (reptilia) from the upper Cretaceous Pierre Shale, central South Dakota, USA. Palaeogeogr Palaeoclimatol Palaeoecol 212(3):277–294

    Article  Google Scholar 

  • Pi D-H, Liu C-Q, Shields-Zhou GA, Jiang S-Y (2013) Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou province, South China: constraints for redox environments and origin of metal enrichments. Precambrian Res 225:218–229

    Article  Google Scholar 

  • Prins MA, Bouwer LM, Beets CJ, Troelstra SR, Weltje GJ, Kruk RW, Kuijpers A, Vroon PZ (2002) Ocean circulation and iceberg discharge in the glacial North Atlantic: inferences from unmixing of sediment size distributions. Geology 30(6):555–558

    Article  Google Scholar 

  • Sun Q, Wang S, Zhou J, Chen Z, Shen J, Xie X, Wu F, Chen P (2010a) Sediment geochemistry of Lake Daihai, north-central China: implications for catchment weathering and climate change during the Holocene. J Paleolimnol 43(1):75–87

    Article  Google Scholar 

  • Sun Y, An Z, Clemens SC, Bloemendal J, Vandenberghe J (2010b) Seven million years of wind and precipitation variability on the Chinese Loess Plateau. Earth Planet Sci Lett 297(3):525–535

    Article  Google Scholar 

  • Tan H, Ma H, Zhang X, Lu H, Wang J (2006) Typical geochemical elements in loess deposit in the northeastern Tibetan Plateau and its paleoclimatic implication. Acta Geol Sin Engl Ed 80(1):110–116

    Article  Google Scholar 

  • Tanaka K, Akagawa F, Yamamoto K, Tani Y, Kawabe I, Kawai T (2007) Rare earth element geochemistry of Lake Baikal sediment: its implication for geochemical response to climate change during the Last Glacial/Interglacial transition. Quat Sci Rev 26(9):1362–1368

    Article  Google Scholar 

  • Vimeux F, Cuffey KM, Jouzel J (2002) New insights into Southern Hemisphere temperature changes from Vostok ice cores using deuterium excess correction. Earth Planet Sci Lett 203(3):829–843

    Article  Google Scholar 

  • Visser JN, Young GM (1990) Major element geochemistry and paleoclimatology of the Permo-Carboniferous glacigene Dwyka Formation and postglacial mudrocks in southern Africa. Palaeogeogr Palaeoclimatol Palaeoecol 81(1):49–57

    Article  Google Scholar 

  • Vital H, Stattegger K (2000) Major and trace elements of stream sediments from the lowermost Amazon River. Chem Geol 168(1):151–168

    Article  Google Scholar 

  • Wang C, Yi H, Li Y, Deng B, Liu D, Wang G, Shi H, Li Y, Ma R, Lin J (2001) Geological evolution and hydrocarbon prospect evaluation in Qiangtang Basin, Tibet. Geological Publishing House, Beijing

    Google Scholar 

  • Wu Z, Zhao X, Ye P, Hu D, Zhou C (2007) Paleo-elevation of the Tibetan Plateau inferred from carbon and oxygen isotopes of lacustrine deposits. Acta Geol Sin 81(9):1277–1288

    Google Scholar 

  • Xiang F, Zhu L, Wang C, Zhao X, Chen H, Yang W (2007) Quaternary sediment in the Yichang area: implications for the formation of the Three Gorges of the Yangtze River. Geomorphology 85(3–4):249–258

    Article  Google Scholar 

  • Yamamoto K, Yamashita F, Adachi M (2005) Precise determination of REE for sedimentary reference rocks issued by the Geological Survey of Japan. Geochem J 39(3):289–297

    Article  Google Scholar 

  • Yamamoto Y, Kitahara N, Kano M (2012) Long memory effect of past climate change in Vostok ice core records. Thermochim Acta 532:41–44

    Article  Google Scholar 

  • Yan L, Zheng M (2015) Influence of climate change on saline lakes of the Tibet Plateau, 1973–2010. Geomorphology 246:68–78

    Article  Google Scholar 

  • Yang SY, Jung HS, Choi MS, Li CX (2002) The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments. Earth Planet Sci Lett 201(2):407–419

    Article  Google Scholar 

  • Yao T, Thompson L, Yang W, Yu W, Gao Y, Guo X, Yang X, Duan K, Zhao H, Xu B (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Change 2(9):663–667

    Article  Google Scholar 

  • Yi H, Zhu X, Zhu Y (2006) Lake level change recorded by core of the Quaternary lacustrine sediment in the central Tibetan plateau and its climatic implications. Earth Sci Front 05:300–307

    Google Scholar 

  • Yu S, Zhu Z, Li S, Li B, Zhou H, Sun Y (1997) Environmental records of variation of iron oxides in drill core from Tianshuihai lake on the southern flanke of West Kunlun Mountains. Geochemica 26(6):88–98

    Google Scholar 

  • Zhang Y, Liu H (2010) How did climate drying reduce ecosystem carbon storage in the forest-steppe ecotone? A case study in Inner Mongolia, China. J Plant Res 123(4):543–549

    Article  Google Scholar 

  • Zhang R, Jiang D, Zhang Z, Yu E (2015) The impact of regional uplift of the Tibetan Plateau on the Asian monsoon climate. Palaeogeogr Palaeoclimatol Palaeoecol 417:137–150

    Article  Google Scholar 

  • Zhao J, Shi Y, Wang J (2011) Comparison between quaternary glaciations in China and the marine oxygen isotope stage (MIS): an improved schema. Acta Geogr Sin 66(7):867–884

    Google Scholar 

  • Zhou S, Wang X, Wang J, Xu L (2006) A preliminary study on timing of the oldest Pleistocene glaciation in Qinghai-Tibetan Plateau. Quat Int 154:44–51

    Article  Google Scholar 

  • Zhou H, Wang Q, Zhao J, Zheng L, Guan H, Feng Y, Greig A (2008) Rare earth elements and yttrium in a stalagmite from Central China and potential paleoclimatic implications. Palaeogeogr Palaeoclimatol Palaeoecol 270(1):128–138

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China No. 41302092. Grateful acknowledgements are made to the Xizang Geothermal Geological Brigade, which provided the field help during the drilling process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianglin He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Wang, J., Zheng, C. et al. Geochemical characteristics of lake clay drilled in well QZ-4: its implication for geochemical response to climate change in the central Tibetan Plateau in the Middle–Late Pleistocene. Environ Earth Sci 75, 1312 (2016). https://doi.org/10.1007/s12665-016-6119-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6119-y

Keywords

Navigation