Skip to main content

Thermo-hydro-mechanical analysis of cement-based sensible heat stores for domestic applications

Abstract

The thermo-hydro-mechanical behaviour of a water-saturated cement-based heat store for domestic applications has been investigated. Numerical simulations have been employed to locate the critical regions during thermal loading, for which analytical solutions have been derived and validated by numerical simulations. The analytical solutions allow a fast screening of materials and design parameters in relation to the stresses induced by thermomechanical loading. Maximum stresses in the system have been quantified based on the thermomechanical properties of three heat exchanger materials selected by design engineers and of the filling material. Sensitivity analyses indicate that the stress distribution is very sensitive to the thermal expansion coefficients of the involved materials. The results of this study can serve as a guide line for the design of the present and similar heat storage systems. The analytical solution developed is a fast and robust method for the evaluation of stresses around heat exchangers embedded in a solid material and can serve as a tool for design optimisation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Notes

  1. “Untersuchung, Modellierung und Bewertung eines intelligenten geothermischen Langzeitwärmespeichers mit umweltneutralem Verhalten”, or “Analysis, Modelling and assessment if an intelligent and environmentally neutral geothermal long-term heat storage system” is a project funded by the German Federal Ministry of Economy and Energy (BMWi).

  2. WAVIN®, http://de.wavin.com.

  3. Füllbinder L, SCHWENK Zement KG®, http://www.schwenk-zement.de/de/Produkte/Produktuebersicht-Zemente.php.

References

  • Abhat A (1983) Low temperature latent heat thermal energy storage: heat storage materials. Sol Energy 30(4):313–332

    Article  Google Scholar 

  • Abramowitz M, Stegun IA (1972) Handbook of mathematical functions. ninth printing

  • Agyenim F, Eames P, Smyth M (2010a) Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array. Renew Energy 35(1):198–207

    Article  Google Scholar 

  • Agyenim F, Hewitt N, Eames P, Smyth M (2010b) A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (lhtess). Renew Sustain Energy Rev 14(2):615–628

    Article  Google Scholar 

  • ASTM (2006) ASTM E831-06, Standard test method for linear thermal expansion of solid materials by thermomechanical analysis. ASTM E831-06

  • ASTM (2008) ASTM D5334-08, Standard test method for determination of thermal conductivity of soil and soft rock by thermal needle probe procedure. ASTM D5334-08

  • Bauer D, Marx R, Nußbicker-Lux J, Ochs F, Heidemann W, Müller-Steinhagen H (2010) German central solar heating plants with seasonal heat storage. Sol Energy 84(4):612–623

    Article  Google Scholar 

  • Bauer D, Marx R, Nußbicker-Lux J, Ochs F, Drüker H, Heidemann W (2013) Forschungsbericht zum BMU-Vorhaben Solarthermie2000plus: Wissenschaftlich-technische Begleitun des Förderprogramms Solarthermie2000plus zu solar unterstützter Nahwärme und Langzeit-Wärmespeicherung. Institut für Thermodynamik und Wärmetechnik, Univeisität Stuttgart, Stuttgart

    Google Scholar 

  • Braun JE, Klein S, Mitchell J (1981) Seasonal storage of energy in solar heating. Sol Energy 26(5):403–411

    Article  Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  • Carson J, Moses H (1963) The annual and diurnal heat-exchange cycles in upper layers of soil. J Appl Meteorol 2(3):397–406

    Article  Google Scholar 

  • Dincer I, Dost S, Li X (1997) Performance analyses of sensible heat storage systems for thermal applications. Int J Energy Res 21(12):1157–1171

    Article  Google Scholar 

  • Duffy A, Rogers M, Ayompe L (2015) Renewable energy and energy efficiency: assessment of projects and policies. Wiley, New York

    Google Scholar 

  • Forster M (2004) Theoretical investigation of the system sno x/sn for the thermochemical storage of solar energy. Energy 29(5):789–799

    Article  Google Scholar 

  • Gil A, Medrano M, Martorell I, Lazaro A, Dolado P, Zalba B, Cabeza LF (2010) State of the art on high temperature thermal energy storage for power generation. Part 1—concepts, materials and modellization. Renew Sustain Energy Rev 14(1):31–55

    Article  Google Scholar 

  • Hähnlein S, Bayer P, Ferguson G, Blum P (2013) Sustainability and policy for the thermal use of shallow geothermal energy. Energy Policy 59:914–925

    Article  Google Scholar 

  • Hasnain S (1998) Review on sustainable thermal energy storage technologies, part i: heat storage materials and techniques. Energy Convers Manag 39(11):1127–1138

    Article  Google Scholar 

  • Hauer A, Specht M, Sterner M (2010) Energiespeicher–steigerung der energieeffizienz und integration erneuerbarer energien. Report Themen, pp 110–114

  • Herrmann U, Kearney DW (2002) Survey of thermal energy storage for parabolic trough power plants. J Sol Energy Eng 124(2):145–152

    Article  Google Scholar 

  • Herrmann U, Kelly B, Price H (2004) Two-tank molten salt storage for parabolic trough solar power plants. Energy 29(5):883–893

    Article  Google Scholar 

  • Hesaraki A, Holmberg S, Haghighat F (2015) Seasonal thermal energy storage with heat pumps and low temperatures in building projects—a comparative review. Renew Sustain Energy Rev 43:1199–1213

    Article  Google Scholar 

  • IEEE (1992) IEEE 442, Guide for soil thermal resistivity measurements. Institute of Electrical and Electronics Engineers. Inc., New York

    Google Scholar 

  • Jänchen J, Ackermann D, Stach H, Brösicke W (2004) Studies of the water adsorption on zeolites and modified mesoporous materials for seasonal storage of solar heat. Sol Energy 76(1):339–344

    Article  Google Scholar 

  • Jian Y, Bai F, Falcoz Q, Xu C, Wang Y, Wang Z (2015a) Thermal analysis and design of solid energy storage systems using a modified lumped capacitance method. Appl Therm Eng 75:213–223

    Article  Google Scholar 

  • Jian Y, Falcoz Q, Neveu P, Bai F, Wang Y, Wang Z (2015b) Design and optimization of solid thermal energy storage modules for solar thermal power plant applications. Appl Energy 139:30–42

    Article  Google Scholar 

  • John E, Hale M, Selvam P (2013) Concrete as a thermal energy storage medium for thermocline solar energy storage systems. Sol Energy 96:194–204

    Article  Google Scholar 

  • Khudhair AM, Farid MM (2004) A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers Manag 45(2):263–275

    Article  Google Scholar 

  • Kim S, Drzal LT (2009) High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets. Sol Energy Mater Sol Cells 93(1):136–142

    Article  Google Scholar 

  • Kluitenberg G, Ham J, Bristow KL (1993) Error analysis of the heat pulse method for measuring soil volumetric heat capacity. Soil Sci Soci Am J 57(6):1444–1451

    Article  Google Scholar 

  • Kolditz O, Görke UJ, Shao H, Wang W (2012) Thermo-hydro-mechanical-chemical processes in porous media: benchmarks and examples, vol 86. Springer Science & Business Media, New York

    Google Scholar 

  • Kreißig R, Benedix U (2013) Höhere technische Mechanik: Lehr-und Übungsbuch. Springer, New York

    Google Scholar 

  • Kuravi S, Trahan J, Goswami DY, Rahman MM, Stefanakos EK (2013) Thermal energy storage technologies and systems for concentrating solar power plants. Prog Energy Combust Sci 39(4):285–319

    Article  Google Scholar 

  • Laing D, Steinmann WD, Tamme R, Richter C (2006) Solid media thermal storage for parabolic trough power plants. Sol Energy 80(10):1283–1289

    Article  Google Scholar 

  • Laing D, Bahl C, Bauer T, Fiss M, Breidenbach N, Hempel M (2012) High-temperature solid-media thermal energy storage for solar thermal power plants. Proc IEEE 100(2):516–524

    Article  Google Scholar 

  • Lane GA (1983) Solar heat storage: Latent heat materials, vol. i, background and scientific principles. CRC Press, Boco Raton

    Google Scholar 

  • Mettawee EBS, Assassa GM (2007) Thermal conductivity enhancement in a latent heat storage system. Sol Energy 81(7):839–845

    Article  Google Scholar 

  • Michel B, Mazet N, Mauran S, Stitou D, Xu J (2012) Thermochemical process for seasonal storage of solar energy: characterization and modeling of a high density reactive bed. Energy 47(1):553–563

    Article  Google Scholar 

  • Nagel T, Beckert S, Lehmann C, Gläser R, Kolditz O (2016) Multi-physical continuum models of thermochemical heat storage and transformation in porous media and powder beds—a review. Appl Energy 178:323–345

    Article  Google Scholar 

  • Neeper D (2000) Thermal dynamics of wallboard with latent heat storage. Sol Energy 68(5):393–403

    Article  Google Scholar 

  • Prasad L, Muthukumar P (2013) Design and optimization of lab-scale sensible heat storage prototype for solar thermal power plant application. Sol Energy 97:217–229

    Article  Google Scholar 

  • Salomoni VA, Majorana CE, Giannuzzi GM, Miliozzi A, Di Maggio R, Girardi F, Mele D, Lucentini M (2014) Thermal storage of sensible heat using concrete modules in solar power plants. Sol Energy 103:303–315

    Article  Google Scholar 

  • Sass I, Stegner J (2012) Coupled measurements of thermopysical and hydraulical properties of unsaturated and unconsolidated rocks. In: Proceedings, 37th Workshop on Geothermal Reservoir Engineering Stanford University, vol 30

  • Sharma A, Tyagi V, Chen C, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13(2):318–345

    Article  Google Scholar 

  • Skinner JE, Strasser MN, Brown BM, Selvam RP (2014) Testing of high-performance concrete as a thermal energy storage medium at high temperatures. J Sol Energy Eng 136(2):021,004

    Article  Google Scholar 

  • Solar Millennium A (2013) Die parabolrinnen-kraftwerke andasol 1 bis 3-die größten solarkraftwerke der welt. Solar Millennium AG, Erlangen

    Google Scholar 

  • Velraj R, Seeniraj R, Hafner B, Faber C, Schwarzer K (1999) Heat transfer enhancement in a latent heat storage system. Sol Energy 65(3):171–180

    Article  Google Scholar 

  • Zalba B, Marín JM, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 23(3):251–283

    Article  Google Scholar 

Download references

Acknowledgments

Funding was provided by the Federal Ministry of Economic Affairs and Energy under Grant no. 0325547C (IGLU project) and is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Nagel.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “Subsurface Energy Storage”, guest edited by Sebastian Bauer, Andreas Dahmke, and Olaf Kolditz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miao, XY., Beyer, C., Görke, UJ. et al. Thermo-hydro-mechanical analysis of cement-based sensible heat stores for domestic applications. Environ Earth Sci 75, 1293 (2016). https://doi.org/10.1007/s12665-016-6094-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6094-3

Keywords

  • Thermoelasticity
  • Sensible heat storage
  • Heat exchanger interface
  • Solar thermal systems
  • OpenGeoSys