Skip to main content

Advertisement

Log in

Soil chemical alteration due to slaughterhouse waste application as identified by spectral reflectance in São Paulo State, Brazil: an environmental monitoring useful tool

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Despite environmental damage of cow meet production residues, specific methods to evaluate its spatial impact on soil contamination are sparse and time consuming. This study aimed to evaluate the potential of spectroscopy (400–2500 nm) to detected soil contaminated with organic compounds. It was conducted two experiments: (1) Three soils were incubated with pure and diluted blood from slaughterhouse in a greenhouse, and spectral data were obtained in laboratory with a FieldSpec sensor. (2) Field experiment was conducted to prove its approach. Soil spectral responses were evaluated by qualitative and quantitative methods, and chemical analyses were carried out. The addition of residues increased levels mostly of Na (92.9 %), Ca (80.9 %) and K (82.7 %). N and C increased 52.7 %. This high significant addition resulted on a decrease in soil reflectance intensity in all spectral ranges. These changed slightly at 650, 1450, 1550, 1900 and 2100 nm indicating alteration due to cation on the CEC of minerals. Principal components and soil line analyses corroborated the discrimination of samples quantification of Na, K, Ca and Mg, where R 2 vary from 0.68 until 0.85. In field areas with and without the waste also showed different spectra. Spectra were also able to analyze samples located downhill from the area with waste, indicating the presence of the waste close to streams, which came by leaching. The results indicate that it is possible to identify areas with organic residue by a quick method as compared with traditional soil analysis, helping man power inspection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Araújo SR, Demattê JAM, Bellinaso H (2013) Analysing the effects of applying agricultural lime to soils by VNIR spectral sensing: a quantitative and quick method. Int J Remote Sens 34:4570–4584. doi:10.1080/01431161.2013.779045

    Article  Google Scholar 

  • Araújo SR, Demattê JAM, Vicente S (2014a) Soil contaminated with chromium by tannery sludge and identified by vis-NIR-mid spectroscopy techniques. Int J Remote Sens 35:3579–3593. doi:10.1080/01431161.2014.907940

    Article  Google Scholar 

  • Araújo SR, Wetterlind J, Demattê JAM, Stenberg B (2014b) Improving the prediction performance of a large tropical vis-NIR spectroscopic soil library from Brazil by clustering into smaller subsets or use of data mining calibration techniques. Eur J Soil Sci 65:718–729. doi:10.1111/ejss.12165

    Article  Google Scholar 

  • Baret F, Jacquemoud S, Hanocq JF (1993) The soil line concept in remote sensing. Remote Sens Rev 7:65–82. doi:10.1080/02757259309532166

    Article  Google Scholar 

  • Barton CVM (2012) Advances in remote sensing of plants stress. Plant Soil 354:41–44. doi:10.1007/s11104-011-1051-0

    Article  Google Scholar 

  • Bellaver C (2002) Resíduos industriais (farinhas, óleos e sebos), onde colocá-los frente às restrições de mercado. IV Seminário internacional da industrialização da carne. https://www.agencia.cnptiaembrapa.br/Repositorio/. Accessed 15 Jan 2016

  • Bowers SA, Hanks RJ (1965) Reflection of radiant energy from soils. Soil Sci 100:130–138

    Article  Google Scholar 

  • Brown SD (1995) Chemical systems under indirect observation: latent properties and chemometrics. Appl Spectrosc 49:14–31. doi:10.1366/0003702953965876

    Article  Google Scholar 

  • Buring P (1970) Introduction to the study of soils in tropical and subtropical regions. Pudoc, Wageningen

  • Camargo AO, Moniz AC, Jorge JA, Valadares JM (1986) Métodos de análise química, mineralógica e física de solos do IAC. Techinical Report 106. Instituto Agronômico, Campinas, 94 p

  • Chodak M, Niklinska M, Beese B (2007) Near infrared spectroscopy for analysis of chemical and microbiological properties of forest soil organic horizons in heavy metal polluted areas. Biol Fertil Soils 44:171–180. doi:10.1007/s00374-007-0192-z

    Article  Google Scholar 

  • Clark RN, Roush TL (1984) Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. J Geophys Res Solid Earth 89:6329–6340. doi:10.1029/JB089iB07p06329

    Article  Google Scholar 

  • Cohen M, Prenger JP, Debrusk WF (2005) Visible-near infrared reflectance spectroscopy for rapid, non-destructive assessment of wetland soil quality. J Environ Qual 34:1422–1434. doi:10.2134/jeq2004.0353

    Article  Google Scholar 

  • Costa ACS, Bigham JM (2009) Óxidos de Ferro. In: Melo VF, Alleoni LRF (eds) Química e Mineralogia do solo. SBCS, Viçosa, pp 505–572

    Google Scholar 

  • Costa MSS, Costa LAM, Decarli LD, Pelá A, Silva CJ, Matter UF, Olibone D (2009) Composting of slaughterhouse solid waste. Rev Bras Eng Agríc Ambient 13:100–107. doi:10.1590/S1415-43662009000100015

    Google Scholar 

  • Cruz MCP, Nakamura AM, Ferreira ME (1987) Boronadsorption bysoil: effects of boron concentration and soil pH. Pesqui Agropecu Bras 22:621–626

    Google Scholar 

  • Daniel KW, Tripathi NK, Honda K (2003) Artificial neural network analysis of laboratory and in situ spectra for the estimation of macronutrients in soils of Lop Buri (Thailand). Soil Res 41:47–59. doi:10.1071/SR02027

    Article  Google Scholar 

  • Demattê JAM (2002) Characterization and discrimination of soils by their reflected electromagnetic energy. Pesqui Agropecu Bras 37:1445–1458. doi:10.1590/S0100-204X2002001000013

    Article  Google Scholar 

  • Demattê JAM, Garcia GJ (1999) Alteration of soil properties through a weathering sequence as evaluated by spectral reflectance. Soil Sci Soc Am J63:327–342. doi:10.2136/sssaj1999.03615995006300020010x

    Article  Google Scholar 

  • Demattê JAM, Terra FS (2014) Spectral Pedology: a new perspective on evaluation of soils along pedogenetic alterations. Geoderma 217–218:190–200. doi:10.1016/j.geoderma.2013.11.012

    Article  Google Scholar 

  • Demattê JAM, Garcia GJ, Prochnow LI (1998) Influence of induced chemical properties of three soils from paraná state on the spectral reflectance. Rev Bras Ciênc Solo 22:479–490. doi:10.1590/S0100-06831998000300014

    Article  Google Scholar 

  • Demattê JAM, Gama MAP, Cooper M, Araújo JC, Nanni MR, Fiorio PR (2004) Effect of fermentation residue on the spectral reflectance properties of soils. Geoderma 120:187–200. doi:10.1016/j.geoderma.2003.08.016

    Article  Google Scholar 

  • Demattê JAM, Silva MLS, Rocha GC, Carvalho LA, Formaggio AR, Firme LP (2005) Spectral variations in soils amended with filter cake. Rev Bras Ciênc Solo 29:317–326. doi:10.1590/S0100-06832005000300001

    Article  Google Scholar 

  • Demattê JAM, Bellinaso H, Romero DJ, Fongaro CT (2014) Morphological Interpretation of Reflectance Spectrum (MIRS) using libraries looking towards soil classification. Sci Agric 71:509–520. doi:10.1590/0103-9016-2013-0365

    Article  Google Scholar 

  • Dierssen HM (2010) Perspectives on empirical approaches for ocean color remote sensing of chlorophyll in a changing climate. Proc Natl Acad Sci USA 107:17073–17078. doi:10.1073/pnas.0913800107

    Article  Google Scholar 

  • Elrashidi MA, O’Connor GA (1982) Boron sorption and desorption in soils. Soil Sci Soc Am J 46:27–31. doi:10.2136/sssaj1982.03615995004600010005x

    Article  Google Scholar 

  • Embrapa (1999) Sistema brasileiro de classificação de solos. Embrapa - Centro Nacional de Pesquisa de Solos, Brasília

    Google Scholar 

  • Fernandes RBA, BarrónV Torrent J, Fontes MPF (2004) Quantification of iron oxides in Brazilian latosols by diffuse reflectance spectroscopy. Rev Bras Ciênc Solo 28:245–257. doi:10.1590/S0100-06832004000200003

    Article  Google Scholar 

  • Ferreira MMC, Antunes AM, Melgo MS, Volpe PLO (1999) Chemometrics I: multivariate calibration, a tutorial. Quím Nova 22:724–731. doi:10.1590/S0100-40421999000500016

    Article  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892. doi:10.1126/science.1136674

    Article  Google Scholar 

  • Galvão LS, Formaggio AR, Couto EG, Roberts DA (2008) Relationships between the mineralogical and chemical composition of tropical soils and topography from hyperspectral remote sensing data. ISPRS J Photogramm 63:259–271. doi:10.1016/j.isprsjprs.2007.09.006

    Article  Google Scholar 

  • Goldberg S, Forster HS, Heick EL (1993) Boron adsorption mechanisms on oxides, clay minerals and soils inferred from ionic strength effects. Soil Sci Soc Am J 57:704–708. doi:10.2136/sssaj1993.03615995005700030013x

    Article  Google Scholar 

  • Havlin JL, Beaton JD, Tisdale SL, Nelson WL (2005) Soil fertility and fertilizers: an introduction to nutrient management. Pearson, Upper Saddle River

  • Hayward HE, Wadleigh CH (1949) Plant growth on saline and alkali soils. Adv Agron 1:1–38. doi:10.1016/S0065-2113(08)60745-2

    Article  Google Scholar 

  • Helmke PA (1999) The chemical composition of soils. In: Summer ME (ed) Handbook of soil science, 1st edn. CSC Press, New York, pp B3–B24

    Google Scholar 

  • Horta A, Malone B, Stockmann U, Minasny B, Bishop TFA, McBratney AB, Pallaser R, Pozza L (2015) Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: a prospective review. Geoderma 240:180–209. doi:10.1016/j.geoderma.2014.11.024

    Article  Google Scholar 

  • Huete AR, Post DF, Jackson RD (1984) Soil spectral effects on 4-space vegetation discrimination. Remote Sens Environ 15:155–165. doi:10.1016/0034-4257(84)90043-9

    Article  Google Scholar 

  • IAC (2010) Instituto Agronômico de Campinas - Exame proficiência. Campinas

  • IBGE (2007) Censo Agropecuário 2006: dados preliminares, Rio de Janeiro

  • Kuang B, Mahmood HS, Quraishi MZ, Hoogmoed WB, Mouazen AM, van Henten EJ (2012) Sensing soil properties in the laboratory, in situ, and on-line: a review. Adv Agron 114:155–223. doi:10.1016/B978-0-12-394275-3.00003-1

    Article  Google Scholar 

  • Malley DF, Yesmin L, Eilers RG (2002) Rapid analysis of hog manure and manure-amended soils using near-infrared spectroscopy. Soil Sci Soc Am J 66:1677–1686. doi:10.2136/sssaj2002.1677

    Article  Google Scholar 

  • MAPA (2014). http://www.agricultura.gov.br/animal/mercado-interno. Accessed 10 Jan 2016

  • Martens H, Naes T (1989) Multivariate calibration. Wiley, Chinchester

    Google Scholar 

  • Martens H, Nielsen JP, Engelsen SB (2003) Light scattering and light absorbance separated by extended multiplicative signal correction. Application to near-infrared transmission analysis of powder mixtures. Anal Chem 75:394–404. doi:10.1021/ac020194w

    Article  Google Scholar 

  • McBratney AB, Mendonça Santos ML, Minasny B (2003) On digital soil mapping. Geoderma 117:3–52. doi:10.1016/S0016-7061(03)00223-4

    Article  Google Scholar 

  • Messias AS, Tavora BE, Silva RCR, Nascimento AE (2006) Percolação de sódio através de solos do Estado de Pernambuco, Brasil. Bioterra 1:65–72

    Google Scholar 

  • Mouazen AM, Karoui R, De Baerdemaeker J, Ramon H (2005) Classification of soil texture classes by using soil visual near infrared spectroscopy and factorial discriminant analysis techniques. J Near Infrared Spectrosc 13:231–240. doi:10.1255/jnirs.541

    Article  Google Scholar 

  • Nakagawa J (1992) Compostagem: obtenção e uso. In: Guerrini IE and Bull LT (eds) Encontro sobre matéria orgânica do solo: problemas e Soluções, 1st edn. Botucatu

  • Nanni MR, Demattê JAM (2006a) Soil line behavior obtained by laboratorial spectroradiometry for different soil classes. Rev Bras Ciênc Solo 30:1031–1038. doi:10.1590/S0100-06832006000600012

    Article  Google Scholar 

  • Nanni MR, Demattê JAM (2006b) Spectral reflectance methodology in comparison to traditional soil analysis. Soil Sci Soc Am J 70:393–407. doi:10.2136/sssaj2003.0285

    Article  Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U (2008) Uptake of organic nitrogen by plants. New Phytol 182:31–48. doi:10.1111/j.1469-8137.2008.02751.x

    Article  Google Scholar 

  • Nunes WAGA, Menezes JFS, Benites VM, Lima Junior SAO, Anderson S (2015) Use of organic compost produced from slaughterhouse waste as fertilizer in soybean and corn crops. SciAgric 72:343–350. doi:10.1590/0103-9016-2014-0094

    Google Scholar 

  • Odlare M, Pell M, Svensson K (2008) Changes in soil chemical and microbiological properties during 4 years of application of various organic residues. Waste Manage 28:1246–1253. doi:10.1016/j.wasman.2007.06.005

    Article  Google Scholar 

  • Park SJ, Vlek PLG (2002) Environmental correlation of three-dimensional soil spatial variability: a comparison of three adaptive techniques. Geoderma 109:117–140. doi:10.1016/S0016-7061(02)00146-5

    Article  Google Scholar 

  • Ramirez Lopez L (2009) Pedologia quantitativa: espectrometria VIS-NIR-SWIR e mapeamento digital de solos. Dissertation, Luiz de Queiroz College of Agriculture, University of São Paulo (USP)

  • Rhoades JD, Chanduvi F, Leach S (1999) Soil salinity assessment: methods and interpretation of electrical conductivity measurements (FAO Irrigation and Drainage Book 57). Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Ribeiro AG, Galbiatti JA (2004) Nitrate and sodium contamination in percolated water and leaf tissue in lettuce crop irrigated with domestic sewage water. Holos Environ 4:56–67

    Google Scholar 

  • Russell EJ, Wild A (1992) Condiciones del suelo desarrollo de las plantas segun Russell. Mundiprensa, Madri

    Google Scholar 

  • Saeys W, Mouazen AM, Ramon H (2005) Potential for onsite and online analysis of pig manure using visible and near infrared reflectance spectroscopy. Biosyst Eng 91:393–402. doi:10.1016/j.biosystemseng.2005.05.001

    Article  Google Scholar 

  • SAS Institute (2001) SAS/STAT: user’s guide (Release 8.0). SAS Institute Inc, Cary, NC

  • Savitzky A, Golay MJ (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639. doi:10.1021/ac60214a047

    Article  Google Scholar 

  • Scarassati D, Carvalho RF, Delgado VL,Coneglian CMR, Brito NN, Tonso S, Dragoni Sobrinho G, Pelegrini R (2003) Tratamento de efluentes de matadouros e frigoríficos. III Fórum de Estudos Contábeis, Rio Claro

  • Schlegelmilch M, Streese J, Biedermann W, Herold T, Stegmann R (2005) Odour control at biowaste composting facilities. Waste Manage 25:917–927. doi:10.1016/j.wasman.2005.07.011

    Article  Google Scholar 

  • Schwertmann U (1991) Solubility and dissolution of iron oxides. Plant Soil 130:1–25. doi:10.1007/BF00011851

    Article  Google Scholar 

  • Schwertmann U, Fechter H (1984) The influence of aluminium on iron oxides. XI. Aluminium substituted maghemite in soils and its formation. Soil Sci Soc Am J 48:1462–1463. doi:10.2136/sssaj1984.03615995004800060054x

    Article  Google Scholar 

  • Shepherd KD, Walsh MG (2002) Development of reflectance spectral libraries for characterization of soil properties. Soil Sci Soc Am J 66:988–998. doi:10.2136/sssaj2002.9880

    Article  Google Scholar 

  • Silva MS, Mendonça CLA, Vilas Boas MA, Silva MS (1997) Compostagem de resíduos sólidos de frigorífico, visando o saneamento ambiental e a produção de adubo orgânico. In: Congresso Brasileiro de Ciência do Solo, Rio de Janeiro

  • Soil Survey Staff (2013) Keys to soil taxonomy. USDA Natural Resources Conservation Service, Washington

    Google Scholar 

  • Sonesson U, Björklund A, Carlsson M, Dalemo M (2000) Environmental and economic analysis of management systems for biodegradable waste. Resour Conserv Recycl 28:29–53. doi:10.1016/S0921-3449(99)00029-4

    Article  Google Scholar 

  • Song Y, Li F, Yang Z, Ayoko GA, Frost RL, Ji J (2012) Reflectance spectroscopy for monitoring potentially toxic elements in the agricultural soils of Changjiang River Delta, China. Appl Clay Sci 64:75–83. doi:10.1016/j.clay.2011.09.010

    Article  Google Scholar 

  • Soriano-Disla JM, Janik LJ, Viscarra Rossel RA, MacDonald LM, McLaughlin MJ (2014) The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical and biological properties. Appl Spectrosc Rev 49:139–186. doi:10.1080/05704928.2013.811081

    Article  Google Scholar 

  • Stenberg B, Viscarra Rossel RA (2010) Diffuse reflectance spectroscopy for high-resolution soil sensing. In: Viscarra Rossel RA, McBratney A, Minasny B (eds) Proximal soil sensing. Progress in soil science. Springer, Dordrecht, pp 29–47

    Chapter  Google Scholar 

  • Stoner ER, Baumgardner MF (1981) Characteristics variations in reflectance of surface soils. Soil Sci Soc Am J 45:1161–1165. doi:10.2136/sssaj1981.03615995004500060031x

    Article  Google Scholar 

  • Vågen TG (2006) Remote sensing of complex land use change trajectories—a case study from the highlands of Madagascar. Agric Ecosyst Environ 115:219–228. doi:10.1016/j.agee.2006.01.007

    Article  Google Scholar 

  • Van Raij B, Andrade JC, Cantarella H, Quaggio JA (2001) Análise química para avaliação de solos tropicais. Instituto Agronômico de Campinas, Campinas

    Google Scholar 

  • Viscarra Rossel RA (2008) ParLeS: software for chemometric analysis of spectroscopic data. Chemometr Intell Lab 90:72–83. doi:10.1016/j.chemolab.2007.06.006

    Article  Google Scholar 

  • Viscarra Rossel RA, Webster R (2012) Predicting soil properties from the Australian soil visible-near infrared spectroscopic database. Eur J Soil Sci 63:848–860. doi:10.1111/j.1365-2389.2012.01495.x

    Article  Google Scholar 

  • Wetterlind J, Stenberg B, Söderström M (2008) The use of near infrared (NIR) spectroscopy to improve soil mapping at the farm scale. Precis Agric 9:57–69. doi:10.1007/s11119-007-9051-z

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Sao Paulo Research Foundation (FAPESP) for the financial support p.n. 2009/54144-8 and 2005/59691-6 and to GeoCis Research Group, Luiz de Queiroz College of Agriculture, University of São Paulo (http://esalqgeocis.wix.com/geocis).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. M. Demattê.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demattê, J.A.M., Oliveira, J.d., Tavares, T.R. et al. Soil chemical alteration due to slaughterhouse waste application as identified by spectral reflectance in São Paulo State, Brazil: an environmental monitoring useful tool. Environ Earth Sci 75, 1277 (2016). https://doi.org/10.1007/s12665-016-6042-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6042-2

Keywords

Navigation