Skip to main content
Log in

Integrated water research and how it can help address the challenges faced by Germany’s water sector

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The article describes the approach of integrated water research, in particular its overall design, the use of suitable procedures and methods, and the dissemination of its results. Based on four case studies from the German water sector, focusing on water demand forecasting, assessment of technical options, improvement of user acceptance and the selection of measures, respectively, the article explores the potential benefit of integrated water research for addressing the challenges facing the water sector today. Analysis of the case studies shows that the incorporation of integrated water research into a project design results in added value for the practical relevance of the results achieved as well as facilitating the transfer of the results into practice. In each case, different methods were combined within the research process to achieve the common goal of integrating science and society and demonstrate the vital importance of careful planning and method selection if one is to bring about the desired effects. It thus follows that integrated research is not undertaken spontaneously at short notice but is mostly implemented as the result of a general decision after considering the respective benefits and potential added value as well as the resources available. The time span of such research and the intensity of integration can vary considerably. However, a certain amount of flexibility in the process is inevitable in order to react to intermediate results and needs and is a precondition for the serious application of an integrated water research process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abegglen C, Siegrist H (2012) Mikroverunreinigungen aus kommunalem Abwasser. Verfahren zur weitergehenden Elimination auf Kläranlagen (Micropollutants in communal wastewater. Techniques for further elimination at wastewater treatment plants). Bundesamt für Umwelt (Hg.), Umwelt-Wissen (1214), Bern, Switzerland

  • Barjenbruch M, Firk W, Peter-Fröhlich A (2014) Möglichkeiten der Elimination von anthropogenen Spurenstoffen auf kommunalen Kläranlagen (Options for the elimination of anthropogenic micropollutants at communal wastewater treatment plants). Kor Abw 61(10):861–873

    Google Scholar 

  • Baron S, Patterson A, Harris K (2006) Beyond technology acceptance: understanding consumer practice. Int J Serv Indust Manag 17(2):111–135

    Article  Google Scholar 

  • Bergmann M, Jahn T, Knobloch T, Krohn W, Pohl C, Schramm E (2012) Methods for transdisciplinary research. A primer for practice. Campus, Frankfurt

    Google Scholar 

  • Bieker S (2009) Semizentrale Ver- und Entsorgungssysteme—neue Lösungen für schnell wachsende urbane Räume. Untersuchung empfehlenswerter Größenordnungen (Semicentral supply and disposal systems—new solutions for fast growing urban areas. Investigations of recommended scales). Dissertation, Technical University of Darmstadt, Germany

  • Birzle-Harder B (2012) Wahrnehmung der Vakuumtoiletten und des integrierten Abwassersystems am Beispiel der Siedlung Lübeck Flintenbreite. Ergebnisse einer qualitativen empirischen Befragung als Voruntersuchung für das Demonstrationsvorhaben im Hamburger Stadtquartier Jenfelder Au (Perception of vacuum toilets and integrated wastewater systems using the example of the neighbourhood Lübeck Flintenbreite. Results of the qualitative empirical survey as preliminary investigation for the pilot project in Hamburg’s district Jenfelder Au). Präsentation am 20. November 2012 beim KREIS Integrationsworkshop in Hamburg (unpublished)

  • Brandmayr C, Kerber H, Winker M, Schramm E (2015) Impact assessment of emission management strategies of the pharmaceuticals Metformin and Metoprolol to the aquatic environment using Bayesian networks. Sci Total Environ 532:605–616

    Article  Google Scholar 

  • Castelletti A, Soncini-Sessa R (2007) Bayesian networks and participatory modelling in water resource management. Environ Model Softw 22:1075–1088

    Article  Google Scholar 

  • Christian-Smith J, Heberger M, Allen L (2012) Urban water demand in California to 2100: incorporating climate change. Pacific Institute, Oakland, California. http://pacinst.org/wp-content/uploads/sites/21/2014/04/2100-urban-water-efficiency.pdf. Accessed 4 May 2016

  • Corbella H, Sauri Pujol D (2009) What lies behind domestic water use? A review essay on the drivers of domestic water consumption. Boletin de la A.G.E. 50:297–314

    Google Scholar 

  • Defila R, Di Giulio A (2010) Managing consensus in interdisciplinary teams. In: Frodeman R, Thompson Klein J, Mitcham C (eds) The oxford handbook of interdisciplinarity. Oxford, pp 482–485

  • Defila R, Di Giulio A (2016) Transdisziplinär forschen—zwischen Ideal und gelebter Praxis (Transdisciplinarily researching—between ideal and common practice). Hotspots, Geschichten, Wirkungen, Frankfurt A.M., New York

    Google Scholar 

  • Defila R, Di Giulio A, Scheuermann M (2008) Management von Forschungsverbünden—Möglichkeiten der Professionalisierung und Unterstützung (Managament of research cooperations—possibilities for professionalisation and support). Germay, Weinheim

    Google Scholar 

  • Defila R, Di Giulio A, Scheuermann M (2015) Managementverantwortliche inter- und transdisziplinärer Verbünde—Rollen, Kompetenzen, Karrieren. Einführung in das Schwerpunktheft “Managementverantwortliche inter- und transdisziplinärer Verbünde” (Responsible managers of inter- and transdisciplinary cooperations—roles, competences, careers. Introduction to the special issue “Responsible managers of inter- and transdisciplinary cooperations”). Forschung 8(3 + 4):64–69

  • Dewulf A, Termeer C (2015) Governing the future? The potential of adaptive delta management to contribute to governance capabilities for dealing with the wicked problem of climate change adaptation. J Water Clim Change 6(4):759–771

    Google Scholar 

  • DFG (2003) Wasserforschung im Spannungsfeld zwischen Gegenwartsbewältigung und Zukunftssicherung (Water research in the tension area of coping with the present and safeguarding the future). Deutsche Forschungsgemeinschaft (DFG), Senatskommission für Wasserforschung, WILEY-VCH Verlag, Weinheim, Denkschrift

    Google Scholar 

  • Domènech L, Sauri D (2010) Socio-technical transitions in water scarcity contexts: public acceptance of greywater reuse technologies in the Metropolitan Area of Barcelona. Res Conserv Recycl 55(1):53–62

    Article  Google Scholar 

  • Dreze J, Stern N (1985) The theory of cost-benefit analysis. In: Auerbach AJ, Feldstein M (eds) Handbook of public economics. Elsevier, Amsterdam

    Google Scholar 

  • DWA (2010) Do we need New Alternative Sanitation Systems in Germany? In plain language. DWA, Hennef

    Google Scholar 

  • Fenton N, Neil M (2007) Managing risk in the modern world. Applications of Bayesian Networks. A knowledge transfer report from the London Mathematical Society and the Knowledge Transfer Network for Industrial Mathematics. London Mathematical Society, London. http://www.lms.ac.uk/sites/lms.ac.uk/files/files/reports/Bayesiannetworksfinal.pdf. Accessed 2 December 2015

  • Fishburn P (1967) Additive utilities with incomplete product set: applications to priorities and assignments. Operations Research Society of America (ORSA), Baltimore

    Google Scholar 

  • Felmeden J, Michel B, Zimmermann M (2016) Integrierte Bewertung neuartiger Wasserinfrastruktursysteme—Bewertungsverfahren, Bewertungskriterien, räumlicher Bezug (Integrated assessment of novel water infrastructure systems—assessment methods, assessment criteria, spacial reference). netWORKS-Papers. German Institute of Urban Affairs, Berlin, Germany

  • Galàn J, López-Paredes A, del Olmo R (2009) An agent-based model for domestic water management in Valladolid metropolitan area. Water Resour Res 45(5):W05401

    Article  Google Scholar 

  • Grossmann J, Hofmann H (2008) Integrierte Wasserbedarfsprognose. Teil 1: Erstellung eines innovativen Prognosemodells für HAMBURG WASSER (Integrated water demand forecast. Part 1: preparation of an innovative forecast model for HAMBURG WASSER). gwf Wasser Abwasser 149(10):758–763

    Google Scholar 

  • Grossmann J, Meinzinger F (2016) Aktualisierung der integrierten Wasserbedarfsprognose für Hamburg bis zum Jahr 2045. Teil 2: Ergebnisse. (Update of the integrated water demand forecast for Hamburg until 2045. Part 2: results). gwf Wasser Abwasser 157(2):166–173

    Google Scholar 

  • Hefter T, Birzle-Harder B, Deffner J, (2015) Akzeptanz von Grauwasserbehandlung und Wärmerückgewinnung im Wohnungsbau. (Ergebnisse einer qualitativen Bewohnerbefragung (Acceptance of greywater treatment and heat recovery in housing. Findings of a qualitative survey among residents). netWORKS-paper (27), German Institute of Urban Affairs, Berlin, Germany

  • Hegger D, van Vliet B (2010) End user perspectives on the transformation of sanitary systems. In: Van Vliet B, Spaargarden G, Oosterveer P (eds) Social perspectives on the sanitation challenge. Springer, Dordrecht, pp 203–216

    Chapter  Google Scholar 

  • Hegger D, Spaargaren G, van Vliet B, Frijns J (2011) Consumer-inclusive innovation strategies for the Dutch water supply sector: opportunities for more sustainable products and services. NJAS-Wageningen J Life Sci 58(1):49–56

    Article  Google Scholar 

  • Herber W, Wagner H, Roth U (2008) Die Wasserbedarfsprognose als Grundlage für den Regionalen Wasserbedarfsnachweis der Hessenwasser GmbH & Co. KG (The water demand forecast as a basis for the regional detection of water requirements carried out by Hessenwasser GmbH & Co. KG). gwf Wasser Abwasser 149(5):426–434

    Google Scholar 

  • Hillenbrand T, Hiessl H, Klug S, von Lüninck B, Niederste-Hollenberg J, Sartorius C, Walz R (2013) Herausforderungen einer nachhaltigen Wasserwirtschaft. Innovationsreport (Challenges of a sustainable water management. Innovation report). TAB—Büro für Technikfolgenabschätzung beim Deutschen Bundestag (ed), Arbeitsbericht (153), Berlin, Germany https://www.tab-beim-bundestag.de/de/pdf/publikationen/berichte/TAB-Arbeitsbericht-ab158.pdf. Accessed 20 January 2016

  • House-Peters L, Chang H (2011) Urban water demand modeling: review of concepts, methods, and organizing principles. Water Resour Res 47(5):W05401

    Article  Google Scholar 

  • Hsiao C, Yang C (2011) The intellectual development of the technology acceptance model: a co-citation analysis. Int J Inform Manag 31(2):128–136

    Article  Google Scholar 

  • Hurlimann A, Dolnicar S, Meyer P (2009) Understanding behavior to inform water supply management in developed nations: a review of literature, conceptual model and research agenda. J Environ Manage 91(1):47–56

    Article  Google Scholar 

  • Hüttl R, Bens O (eds) (2012) Georessource Wasser—Herausforderung Globaler Wandel. Beiträge zu einer integrierten Wasserressourcenbewirtschaftung in Deutschland (Water as a geological resource—The challenge of global change. Contributions to an integrated water management in Germany). acatech—Deutsche Akademie der Technikwissenschaften, Munich, Germany

  • Jahn T, Bergmann M, Keil F (2012) Transdisciplinarity: between mainstreaming and marginalization. Ecol Econ 79:1–10

    Article  Google Scholar 

  • Keil F, Kluge T, Liehr S, Lux A, Moser P, Schramm E (2007) Integrierte Perspektiven in der Wasserforschung (Integrated perspectives in water research). ISOE-Diskussionspapiere (25), Institute for Social-Ecological Research, Frankfurt/Main, Germany

  • Kerber H, Schramm E, Winker M (2014) Arzneimittelwirkstoffe: Zwei Zukunftsszenarien zur Verringerung der Gewässerbelastung. Innovative Maßnahmen zur Risikominderung im Bereich der Humanmedizin (Pharmaceuticals: Two future scenarios for the reduction of the aquatic pollution. Innovative measures for the risk reduction in the area of human pharmaceuticals). ISOE-Studientexte (22). Institute for Social-Ecological Research (ISOE), Frankfurt/Main, Germany. http://www.isoe.de/uploads/media/st-22-isoe-2014_01.pdf. Accessed 1 June 2015

  • Kerber H, Schmitt B, Schramm E (2015) Arzneimittel im Abwasser als „geteiltes Risiko“: Beobachtungen aus dem Stakeholder-Dialog des Projekts SAUBER + (Pharmaceuticals in wastewater as „shared risk“: observations from the stakeholder dialogue of the project SAUBER +) In: Pinnekamp J, Palmowski L, Kümmerer K, Schramm E (eds) (2015) Abwasser aus Einrichtungen des Gesundheitswesens—Charakterisierung, Technologien, Kommunikation und Konzepte, Abschlussbericht (Wastewater from public health institutions—characterization, technologies, communication and concepts). Gewässerschutz Wasser Abwasser (238), RWTH Aachen, Aachen, Germany, pp 101–115

  • Kluge T, Deffner J, Götz K, Liehr S, Michel B, Michel F, Rüthrich W (2008) Integrierte Wasserbedarfsprognosen. Teil 2: Grundlagen und Methodik (Integrated water demand forecast. Part 2: Bases and methodology). gwf Wasser Abwasser 149(10):764–772

    Google Scholar 

  • Krohn W (2010) Interdisciplinary cases and disciplinary knowledge—epistemic challenges of interdisciplinary research. In: Frodeman R, Thompson Klein J, Mitcham C (eds) Oxford Handbook of Interdisciplinarity. Oxford, pp 31–49, ISBN 978-0-19-923691-6

  • Liehr S, Schulz O, Kluge T, Sunderer G, Wackerbauer J (2016) Aktualisierung der integrierten Wasserbedarfsprognose für Hamburg bis zum Jahr 2045. Teil 1: Grundlagen und Methodik (Update of the integrated water demand forecast for Hamburg until 2045. Part 1: Bases and methodology). gwf Wasser Abwasser 157(2):156–165

    Google Scholar 

  • Lienert J, Scholten L, Egger C, Maurer M (2014) Structured decision-making for sustainable water infrastructure planning and four future scenarios. EURO J Decis Process 3(1–2):107–140

    Google Scholar 

  • Mittelstrass J (2011) On transdisciplinarity. Trames 15(65/60):329–338

    Article  Google Scholar 

  • Möller K, Burgschweiger J (eds) (2008) Wasserversorgungskonzept für Berlin und für das von den BWB versorgte Umland (Entwicklung bis 2040) (Water supply concept for Berlin and for the surrounding areas serviced by BWB). Studie im Auftrag der Berliner Wasserbetriebe, Berlin 2008

    Google Scholar 

  • Nowotny H (2003) Democratising expertise and socially robust knowledge. Sci Publ Policy 30(3):151–156

    Article  Google Scholar 

  • Oldenburg M, Albold A, Wendland C, Otterpohl R (2008) Erfahrungen aus dem Betrieb eines neuen Sanitärkonzepts über einen Zeitraum von acht Jahren (Experience from the operation of a new sanitation concept over a period of eight years). Kor Abw 55:1100–1105

    Google Scholar 

  • Renner R, Schneider F, Hohenwallner D, Kopeinig C, Kruse S, Lienert J, Link S, Muhar S (2013) Meeting the challenges of transdisciplinary knowledge production for sustainable water governance. Mt Res Dev 33(3):234–247

    Article  Google Scholar 

  • Saaty T (1980) The analytic hierarchy process. McGraw-Hill, New York

    Google Scholar 

  • Saaty T, Vargas L (2012) Models, methods, concepts & applications of the analytic hierarchy process. International series in operations research & management science, 2nd edn. Springer, New York, p 175

    Book  Google Scholar 

  • Scholten L, Scheidegger A, Reichert P, Mauer M, Lienert J (2014) Strategic rehabilitation planning of piped water networks using multi-criteria decision analysis. Water Res 49(1):124–143

    Article  Google Scholar 

  • Schramm E (2015) Interdisciplinarity, transdisciplinarity, transition and water. In: Fayyad M, Sandri S, Weiter M, Zikos D (eds) Social water studies in the Arab Region. State of the art and perspectives. Entwicklungspolitische Themenreihe des SLE, vol. 4. Humboldt-Universität zu Berlin/Seminar für Ländliche Entwicklung SLE, Berlin, pp 3–21

  • Schramm E, Kluge T, Beck S, Hansjürgens B, Hiessl H, Sartorius C (2013) Integrierte Systemlösungen als Strategie für eine nachhaltige und exportstarke Wasserwirtschaft (Integrated system solutions as strategy for a sustainable water with export strength). Wasser Abf 1–2:39–44

    Article  Google Scholar 

  • Schramm E, Oldenburg M, Wuttke M, Birzle-Harder B, Hefter T, Rohde R (2017) Akzeptanz von Unterdrucktoiletten in der Siedlungswasserwirtschaft. 1.Wahrnehmung der Nutzenden und technische Hintergründe (Acceptance of vacuum toilets in environmental engineering. 1. User perception and technical background). Kor Abw (submitted)

  • Schuwirth N, Reichert P, Lienert J (2012) Methodological aspects of multi-criteria decision analysis for 919 policy support: a case study on pharmaceutical removal from hospital wastewater. Eur J Oper Res 220(2):472–483

    Article  Google Scholar 

  • Talwar S, Wiek A, Robinson J (2011) User engagement in sustainability research. Sci Publ Policy 38(5):379–390

    Article  Google Scholar 

  • Telkamp P, Mels A, van den Bulk J, Koetse E, Braadbaart O (2009) User acceptance of vacuum toilets and grey water systems in The Netherlands, Norway and Germany. In: D4.1.1-Cross-country assessment of the adoption, operational functioning and performance of urban ecosan systems inside and outside the EU, Wageningen, pp 52–59

  • Triantaphyllou E (2000) Multi-criteria decision making: a comparative study. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • UBA (2015) Organische Mikroverunreinigungen in Gewässern. Vierte Reinigungsstufe für weniger Einträge (Organic micropollutants in water bodies. Forth treatment step for a reduced emission). Umweltbundesamt (UBA), Dessau, Germany. https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/organische_mikroverunreinigungen_in_gewassern_vierte_reinigungsstufe.pdf.%20Accessed%2020%20January%20201

  • Winker M, Felmeden J, Milosevic D, Michel B, Werner T (2014): Transformation von leitungsgebundener Infrastruktur: interessante Stadtgebiete in Frankfurt am Main und Hamburg und ihre möglichen technischen Systemalternativen (Transformation of grid-bound infrastructures: interesting neighbourhoods in Frankfurt/Main and Hamburg and their potential technical system alternatives). In: Gulyas H, Otterpohl R, Köster S (eds) 26. Hamburger Kolloquium zur Abwasserwirtschaft. Themenschwerpunkte: Entwässerungskonzepte, Gewässerschutz, Abwasserwirtschaft und Energie, Schlammentsorgung, Industrieabwasser. Hamburg, 23–24 September 2014. GEFEU: Hamburg: 13–22

  • Zangemeister C (1976) Nutzwertanalyse in der Systemtechnik—Eine Methodik zur multidimensionalen Bewertung und Auswahl von Projektalternativen (Cost-benefit analysis for systems technology—a methodology for the multidimensional evaluation and selection of project alternatives). Diss. Techn. Univ. Berlin 1970, 4th edn. Wittemann, Munich, Germany

Download references

Acknowledgments

The authors would like to thank all partners of the projects netWORKS 3, KREIS, and SAUBER+, and HAMBURG WASSER for their collaboration and support as well as the project stakeholders, who have contributed to this work through fruitful discussions and comments. This work was accomplished within the projects “netWORKS 3: Intelligent integrated water management solutions in Frankfurt am Main and Hamburg” (Grant Number 033W006A), “KREIS: From disposal to supply” (Grant Number 033L047F) and “SAUBER+: Innovative concepts for wastewater from public health sector facilities” (Grant Number 02WRS1280B) which were all funded by the German Federal Ministry of Education and Research (BMBF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Winker.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “Water in Germany”, guest edited by Daniel Karthe, Peter Chifflard, Bernd Cyffka, Lucas Menzel, Heribert Nacken, Uta Raeder, Mario Sommerhäuser and Markus Weiler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winker, M., Schramm, E., Schulz, O. et al. Integrated water research and how it can help address the challenges faced by Germany’s water sector. Environ Earth Sci 75, 1226 (2016). https://doi.org/10.1007/s12665-016-6029-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6029-z

Keywords

Navigation