Environmental Earth Sciences

, 75:1223 | Cite as

Description of current and future snow processes in a small basin in the Bavarian Alps

  • M. Weber
  • M. Bernhardt
  • J. W. Pomeroy
  • X. Fang
  • S. Härer
  • K. Schulz
Thematic Issue
Part of the following topical collections:
  1. Water in Germany

Abstract

Snow cover dynamics in alpine regions play a crucial role in view of the water balance of head water catchments. The temporal storage of water in form of snow and ice leads to a decoupling of precipitation and runoff. Changes in the volume and the temporal dynamics of the snow storage lead to modified runoff regimes and can influence the frequency of low flow events and floods. For a better estimation of the possible range and direction of future changes, projection runs can be realized by using process-based models. In this study, the Cold Regions Hydrological Modelling platform (CRHM) is used to compile such a model for simulating the snow cover development within research catchment Zugspitze (RCZ; 11.4 km2/Germany). Therefore, the catchment is divided into four hydrological response units (HRUs), able to cover the physiographic characteristics in four elevation zones. The model is evaluated over snow depth measurements. The range of variability within and differences between the HRUs are analyzed, and future projections (2001–2100) are performed on the basis of three different WETTREG realizations. It could be shown that CRHM is able to reproduce the snow cover dynamics very well and that the ongoing climate change does have an identifiable influence on the average extent and size of the snow storage. Furthermore, it could be shown that variations in snow cover dynamics within the RCZ are strongly connected to NAO.

Keywords

Climate change Alpine hydrology Snow cover NAO Hydrological response unit 

References

  1. Adam JC, Hamlet AF, Lettenmaier DP (2009) Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrol Process 23(7):962–972. doi:10.1002/hyp.7201 CrossRefGoogle Scholar
  2. Angström A (1924) Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation. Q J R Meteor Soc 50(210):121–126. doi:10.1002/qj.49705021008
  3. Beniston M (1997) Variations of snow depth and duration in the Swiss Alps over the last 50 Years: links to Changes in large-scale climatic forcings. Clim Change 36:281–300CrossRefGoogle Scholar
  4. Beniston M (2012) Is snow in the Alps receding or disappearing? WIREs Clim Change 3(4):349–358. doi:10.1002/wcc.179 CrossRefGoogle Scholar
  5. Bernhardt M, Schulz K (2010) SnowSlide: a simple routine for calculation gravitational snow transport. Geophys Res Let 37(11). doi:10.1029/2010GL043086
  6. Bernhardt M, Zängl G, Liston GE, Strasser U, Mauser W (2009) Using wind fields from a high-resolution atmospheric model for simulating snow dynamics in mountainous terrain. Hydrol Process 23(7):1064–1075. doi:10.1002/hyp.7208 CrossRefGoogle Scholar
  7. Bernhardt M, Liston GE, Strasser U, Zängl G, Schulz K (2010) High resolution modelling of snow transport in complex terrain using downscaled MM5 wind fields. Cryosphere 4(1):99–113. doi:10.5194/tc-4-99-2010 CrossRefGoogle Scholar
  8. Bernhardt M, Schulz K, Liston GE, Zängl G (2012) The influence of lateral snow redistribution processes on snow melt and sublimation in alpine regions. J Hydrol 424–425:196–206. doi:10.1016/j.jhydrol.2012.01.001 CrossRefGoogle Scholar
  9. Blomenhofer A, Gudera T, Neumann J, Schwebler W, Sprenger W, Wingering M (2009) Auswirkungen des Klimawandels auf Bodenwasserhaushalt und Grundwasserneubildung in Baden-Württemberg. Bayern und Rheinland-Pfalz: Untersuchungen auf Grundlage von WETTREG2003- und WETTREG2006-Klimaszenarien. KLIWA-Projekt B 3.3.1 “Simulation der Grundwasserneubildung mit redionalen Klimaszenarien”, KarlsruheGoogle Scholar
  10. Brunt D (1932) Notes on radiation in the atmosphere. I Q J R Meteor Soc 58(247):389–420. doi:10.1002/qj.49705824704 CrossRefGoogle Scholar
  11. Dankers R, Christensen OB (2005) Climate change impact on snow coverage, evaporation and rover discharge in the sub-Arctic Tana Basin, Northern Fennoscandia. Climate Change 69(2–3):367–392CrossRefGoogle Scholar
  12. DeBeer CM, Pomeroy JW (2010) Simulation of the snowmelt runoff contributing area in a small alpine basin. Hydrol Earth Syst Sci 14(7):1205–1219. doi:10.5194/hess-14-1205-2010 CrossRefGoogle Scholar
  13. Dornes PF, Pomeroy JW, Pietroniro A, Carey SK, Quinton WL (2008) Influence of landscape aggregation in modelling snow-cover ablation and snowmelt runoff in a sub-arctic mountainous environment. Hydrolog Sci J 53(4):725–740. doi:10.1623/hysj.53.4.725 CrossRefGoogle Scholar
  14. Durand Y, Giraud G, Laternser M, Etchevers P, Mérindol L, Lesaffre B (2009) Reanalysis of 47 Years of climate in the French Alps (1958–2005): climatology and trends for snow cover. J Appl Meteorol Climatol 48:187–199Google Scholar
  15. Ellis CR, Pomeroy JW, Brown T, MacDonald J (2010) Simulations of snow accumulation and melt in needleleaf forest environments. Hydrol Earth Syst Sci 14(6):925–940. doi:10.5194/hess-14-925-2010 CrossRefGoogle Scholar
  16. Enke W, Kreienkamp F (2006a) WETTREG A1B SCENARIO RUN, UBA PROJECT, 2051–2060. http://cerawww.dkrz.de/WDCC/ui/Compact.jsp?acronym=WR_A1B_2051_2060
  17. Enke W, Kreienkamp F (2006b) WETTREG A1B SCENARIO RUN, UBA PROJECT, 2061–2070. http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=WR_A1B_2061_2070
  18. Enke W, Kreienkamp F (2006c) WETTREG A1B SCENARIO RUN, UBA PROJECT, 2071–2080. http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=WR_A1B_2071_2080
  19. Enke W, Kreienkamp F (2006d) WETTREG A1B SCENARIO RUN, UBA PROJECT, 2081–2090. http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=WR_A1B_2081_2090
  20. Enke W, Kreienkamp F (2006e) WETTREG A1B SCENARIO RUN, UBA PROJECT, 2091–2100. http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=WR_A1B_2091_2100
  21. Enke W, Deutschländer T, Schneider F, Küchler W (2005) Results of five regional climate studies applying a weather pattern based downscaling method to ECHAM4 climate simulations. Meteorol Z 14(2):247–257CrossRefGoogle Scholar
  22. Essery R, Etchevers P (2004) Parameter sensitivity in simulations of snowmelt. J Geophys Res 109(D20). doi:10.1029/2004JD005036
  23. Essery R, Rutter N, Pomeroy JW, Baxter R, Stähli M, Gustafsson D, Barr A, Bartlett P, Elder K (2009) SNOWMIP2: an evaluation of forest snow process simulations. B Am Meteorol Soc 90(8):1120–1135. doi:10.1175/2009BAMS2629.1 CrossRefGoogle Scholar
  24. European Environment Agency (2009) Regional climate change and adaptation: The Alps facing the challenge of changing water resources. EEA, Report 8 Google Scholar
  25. Fang X, Pomeroy JW (2016) Impact of antecedent conditions on simulations of a flood in a mountain headwater basin. Hydrol Process 30(16):2754–2772. doi:10.1002/hyp.10910 CrossRefGoogle Scholar
  26. Fang X, Pomeroy JW, Ellis CR, MacDonald MK, DeBeer CM, Brown T (2013) Multi-variable evaluation of hydrological model predictions for a headwater basin in the Canadian Rocky Mountains. Hydrol Earth Syst Sci 17(4):1635–1659. doi:10.5194/hess-17-1635-2013 CrossRefGoogle Scholar
  27. FAO (1995) Water sector policy review and strategy formulation: A general framework. FAO Land and Water Bulletin, vol 3. FAO; World Bank UNDP; Food and Agriculture Organization of the United Nations RomeGoogle Scholar
  28. Friedmann A, Korch O (2010) Die Vegetation des Zugspitzplatts (Wettersteingebirge, Bayerische Alpen): Aktueller Zustand und Dynamik. Berichte der Reinhold-Tüxen-Gesellschaft 22(22):114–128Google Scholar
  29. Gao L, Bernhardt M, Schulz K (2012) Downscaling ERA-Interim temperature data in comlex terrain. Hydrol Earth Syst Sci 16:4661–4673. doi:10.5194/hess-16-4661-2012 CrossRefGoogle Scholar
  30. Garnier BJ, Ohmura A (1970) The evaluation of surface variations in solar radiation income. Sol Energy 13(1):21–34. doi:10.1016/0038-092X(70)90004-6 CrossRefGoogle Scholar
  31. Garvelmann J, Pohl S, Weiler M (2013) From observation to the quantification of snow processes with a time-lapse camera network. Hydrol Earth Syst Sci 17(4):1415–1429. doi:10.5194/hess-17-1415-2013 CrossRefGoogle Scholar
  32. Granger RJ, Pomeroy JW (1997) Sustainability of the western Canadian boreal forest under changing hydrological conditions.: I. Snow accumulation and ablation. Sustainability of Water Resources under Increasing Uncertainty IAHS Publ No. 240:243–250Google Scholar
  33. Hagg W (2013) Bayerische Gletscher. www.bayerische-gletscher.de. Accessed 5 Feb 2013
  34. Hantel M, Hirtl-Wielke L-M (2007) Sensitivity of Alpine snow cover to European temperature. Int J Climatol 27:1265–1275. doi:10.1002/joc.1472 CrossRefGoogle Scholar
  35. Härer S, Bernhardt M, Corripio JG, Schulz K (2013) PRACTISE–ssPhoto Rectification And ClaificaTIon SoftwarE (V.1.0). Geosci Model Dev 6(3):837–848. doi:10.5194/gmd-6-837-2013 CrossRefGoogle Scholar
  36. Helfricht K, Schöber J, Schneider K, Sailer R, Kuhn M (2014) Interannual persistence of the seasonal snow cover in a glacierized catchment. J Glaciol 60(223):889–904. doi:10.3189/2014JoG13J197 CrossRefGoogle Scholar
  37. Hurrell JW, van Loon H (1997) Decadal variations in climate associated with the North Atlantic oscillation. Clim Change 36:301–326CrossRefGoogle Scholar
  38. Hüttl C (1999) Steuerungsfaktoren und Quantifizierung der chemischen Verwitterung auf dem Zugspitzplatt (Wettersteingebirge, Deutschland). Münchener Geographische Abhandlungen Reihe B(Band B 30)Google Scholar
  39. IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  40. Klämt A (2005) Langzeitverhalten der Lufttemperatur in Baden-Württemberg und Bayern: KLIWA-Projekt A 1.2.3 “Erarbeitung und Bereitstellung von langen Reihen interpolierter Gitterpunktwerte (Tageswerte) und Analyse des Langzeitverhaltens von Gebietsmittelwerten der Lufttemperatur in Baden-Württemberg und Bayern”. Bayerisches Landesamt für Wasserwirtschaft, Ref. 11, MünchenGoogle Scholar
  41. Klämt A (2008) Langzeitverhalten von Sonnenscheindauer und Globalstrahlung sowie von Verdunstung und Klimatischer Wasserbilanz in Baden-Württemberg und Bayern: KLIWA-Projekt A 1.2.1/1.2.2 “Flächendeckende Analyse des Langzeitverhaltens der potentiellen und tatsächlichen Verdunstungshöhe”, KLIWA-Projekt A 1.2.4 “Langzeitverhalten der Sonnenscheindauer und Globalstrahlung für hydrologische Auswertungen”, OffenbachGoogle Scholar
  42. Kling H, Fuchs M, Paulin M (2012) Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J Hydrol 424–425:264–277. doi:10.1016/j.jhydrol.2012.01.011 CrossRefGoogle Scholar
  43. König-Langlo G, Augstein F (1994) Parameterization of the downward long-wave radiation at the Earth surface in polar regions. Meteorol Z 3(6):343–347Google Scholar
  44. Konzelmann T, van de Wal R, Greuell W, Bintanja R, Henneken E, Abeouchi A (1994) Parameterization of global and longwave incoming radiation for the Greenland Ice Sheet. Global Planet Change 9(1–2):143–164. doi:10.1016/0921-8181(94)90013-2 CrossRefGoogle Scholar
  45. Liston GE, Elder K (2006) A meteorological distribution system for high-resolution terrestrial modeling (MicroMet). J Hydrometeorol 7(2):217–234. doi:10.1175/JHM486.1 CrossRefGoogle Scholar
  46. López-Moreno JI, Goyette S, Beniston M (2009) Impact of climate change on snowpack in the Pyrenees: horizontal spatial variability and vertical gradients. J Hydrol 374(3–4):384–396. doi:10.1016/j.jhydrol.2009.06.049 CrossRefGoogle Scholar
  47. López-Moreno JI, Pomeroy JW, Revuelto J, Vicente-Serrano SM (2013) Response of snow processes to climate change: spatial variability in a small basin in the Spanish Pyrenees. Hydrol Process 27(18):2637–2650. doi:10.1002/hyp.9408 CrossRefGoogle Scholar
  48. MacDonald MK, Pomeroy JW, Pietroniro A (2009) Parameterizing redistribution and sublimation of blowing snow for hydrological models: tests in a mountainous subarctic catchment. Hydrol Process 23(18):2570–2583. doi:10.1002/hyp.7356 CrossRefGoogle Scholar
  49. MacDonald MK, Pomeroy JW, Pietroniro A (2010a) Hydrological response unit-based blowing snow modelling over an alpine ridge. Hydrol Earth Syst Sci 7:1167–1208CrossRefGoogle Scholar
  50. MacDonald MK, Pomeroy JW, Pietroniro A (2010b) On the importance of sublimation to an alpine snow mass balance in the Canadian Rocky Mountains. Hydrol Earth Syst Sci 14(7):1401–1415. doi:10.5194/hess-14-1401-2010 CrossRefGoogle Scholar
  51. Marks D, Domingo J, Susong D, Link T, Garen D (1999) A spatially distributed energy balance snowmelt model for application in mountain basins. Hydrol Process 13(12–13):1935–1959. doi:10.1002/(SICI)1099-1085(199909)13:12/13<1935:AID-HYP868>3.0.CO;2-C CrossRefGoogle Scholar
  52. Mellander P-E, Löfvenius MO, Laudon H (2007) Climate change impact on snow and soil temperature in boreal Scots pine stands. Clim Change 85(1–2):179–193. doi:10.1007/s10584-007-9254-3 CrossRefGoogle Scholar
  53. Melvold K, Skaugen T (2013) Multiscale spatial variability of lidar-derived and modeled snow depth on Hardangervidda, Norway. Ann Glaciol 54(62):273–281. doi:10.3189/2013AoG62A161 CrossRefGoogle Scholar
  54. Merritt WS, Alila Y, Barton M, Taylor B, Cohen S, Neilsen D (2006) Hydrologic response to scenarios of climate change in sub watersheds of the Okanagan basin, British Columbia. J Hydrol 326(1–4):79–108. doi:10.1016/j.jhydrol.2005.10.025 CrossRefGoogle Scholar
  55. Meybeck M, Green P, Vörösmarty C (2001) A new typology for mountains and other relief classes. Mt Res Dev 21(1):34–45. doi:10.1659/0276-4741(2001)021[0034:ANTFMA]2.0.CO;2 CrossRefGoogle Scholar
  56. Miller H (1962) Zur Geologie des westlichen Wetterstein- und Mieminger Gebirges (Tirol): Strukturzusammenhänge am Ostrand des Ehrwalder Beckens. Dissertation, LMUGoogle Scholar
  57. Minder JR (2010) The Sensitivity of Mountain Snowpack Accumulation to Climate Warming. J Clim 23:2634–2650. doi:10.1175/2009JCLI3263.1 CrossRefGoogle Scholar
  58. Mote PW, Hamlet AF, Martyn PC, Lettenmaier DP (2005) Declining mountain snowpack in Western North America. American Meteorological SocietyGoogle Scholar
  59. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models: part 1A discussion of principles. J Hydrol 10:282–290CrossRefGoogle Scholar
  60. Nogués-Bravo D, Araújo MB, Errea MP, Martínez-Rica JP (2007) Exposure of global mountain systems to climate warming during the 21st Century. Glob Environ Change 17(3–4):420–428. doi:10.1016/j.gloenvcha.2006.11.007 CrossRefGoogle Scholar
  61. Ohmura A (2001) Physical basis for the temperature-based melt index method. J Appl Meteorol 40(4):753–761. doi:10.1175/1520-0450(2001)040<0753:PBFTTB>2.0.CO;2 CrossRefGoogle Scholar
  62. Pomeroy JW (1989) A process-based model of snow drifting. Ann Glaciol 13:237–240CrossRefGoogle Scholar
  63. Pomeroy JW, Li L (2000) Prairie and arctic areal snow cover mass balance using a blowing snow model. J Geophys Res 105(D21):26619. doi:10.1029/2000JD900149 CrossRefGoogle Scholar
  64. Pomeroy JW, Gray DM, Brown T, Hedstrom NR, Quinton WL, Granger RJ, Carey SK (2007) The cold regions hydrological model: a platform for basing process representation and model structure on physical evidence. Hydrol Process 21(19):2650–2667. doi:10.1002/hyp.6787 CrossRefGoogle Scholar
  65. Pomeroy JW, Fang X, Marks DG (2016) The Cold Rain-on-Snow Event of June 2013 in the Canadian Rockies - Characteristics and Diagnosis. Process, Hydrol. doi:10.1002/hyp.10905 Google Scholar
  66. Räisänen J (2007) Warmer climates: less or more snow? Clim Dyn 30:307–319CrossRefGoogle Scholar
  67. Rappl A, Wetzel K-F, Büttner G, Scholz M (2010) Tracerhydrolgische Untersuchungen am Partnach-Ursprung: dye tracer investigation at the Partnach Spring (German Alps). Hydrol Water Resour Manage 54(4):220–230Google Scholar
  68. Rasmus S, Räisänen J, Lehning M (2004) Estimating snow conditions in Finland in the late 21st century using the SNOWPACK model with regional climate scenario data as input. Ann Glaciol 38(1):238–244. doi:10.3189/172756404781814843 CrossRefGoogle Scholar
  69. Reich T (2005) Langzeitverhalten des Gebietsniederschlags in Baden-Württemberg und Bayern: KLIWA-Projekt A 1.1.1 “Bereitstellung von langen Reihen interpolierter Gitterpunktwerte des Niederschlags mit Hilfe des Verfahrens BONIE”: KLIWA-Projekt A 1.1.2 “Langzeituntersuchungen von Gebietswertreihen des Niederschlags”. Bayerisches Landesamt für Wasserwirtschaft, Ref. 11, MünchenGoogle Scholar
  70. Scherrer SC, Appenzeller C (2006) Swiss Alpine snow pack variability: major patterns and links to local climate and large-scale flow. Clim Res 32:187–199CrossRefGoogle Scholar
  71. Scherrer SC, Croci-Maspoli M, Schwierz C, Appenzeller C (2006) Two-dimensional indices of atmospheric blocking and their statistical relationship with winter climate patterns in the Euro-Atlantic region. Int J Climatol 26(2):233–249. doi:10.1002/joc.1250 CrossRefGoogle Scholar
  72. Smiatek G, Kunstmann H, Knoche R, Marx A (2009) Precipitation and temperature statistics in high-resolution regional climate models: Evaluation for the European Alps. J Geophys Res 114(D19). doi:10.1029/2008JD011353
  73. Spekat A, Enke W, Kreienkamp F (2007) Neuentwicklung von regional hoch aufgelösten Wetterlagen für Deutschland und Bereitstellung regionaler Klimaszenarios auf der Basis von globalen Klimasimulationen mit dem Regionalisierungsmodell WETTREG auf der Basis von globalen Klimasimulationen mit ECHAM5/MPI-OM T63L31 2010 bis 2100 für die SRESSzenarios B1, A1B und A2. Publikationen des UmweltbundesamtesGoogle Scholar
  74. Uhlmann B, Goyette S, Beniston M (2009) Sensitivity analysis of snow patterns in Swiss ski resorts to shifts in temperature, precipitation and humidity under conditions of climate change. Int J Climatol 29(8):1048–1055. doi:10.1002/joc.1786 CrossRefGoogle Scholar
  75. Viviroli D, Dürr HH, Messerli B, Meybeck M, Weingartner R (2007) Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Resour Res 43(7):1–13. doi:10.1029/2006WR005653 CrossRefGoogle Scholar
  76. Viviroli D, Archer DR, Buytaert W, Fowler HJ, Greenwood GB, Hamlet AF, Huang Y, Koboltschnig G, Litaor MI, López-Moreno JI, Lorentz S, Schädler B, Schreier H, Schwaiger K, Vuille M, Woods R (2011) Climate change and mountain water resources: overview and recommendations for research, management and policy. Hydrol Earth Syst Sci 15(2):471–504. doi:10.5194/hess-15-471-2011 CrossRefGoogle Scholar
  77. Wetzel K-F (2004) On the Hydrology of the Partnach Area in the Wetterstein Mountains (Bavarian Alps). Erdkunde 58(2):172–186. doi:10.3112/erdkunde.2004.02.05 CrossRefGoogle Scholar
  78. Wrobel J-P (1980) Bericht über den Markierungsversuch auf dem Zugspitzplatt im Sommer 1980. Bayerisches Geologisches Landesamt, München, pp1–6Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • M. Weber
    • 1
  • M. Bernhardt
    • 2
  • J. W. Pomeroy
    • 3
  • X. Fang
    • 3
  • S. Härer
    • 2
  • K. Schulz
    • 2
  1. 1.Department of GeographyUniversity of MunichMunichGermany
  2. 2.Institute of Water Management, Hydrology and Hydraulic EngineeringUniversity of Natural Resources and Life SciencesViennaAustria
  3. 3.Centre for HydrologyUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations