Skip to main content
Log in

CO2 sequestration through mineral carbonation of waste phosphogypsum using the technique of membrane electrolysis

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Mineral carbonation is considered to be a promising method for sequestering atmospheric CO2. This paper studied the technical feasibility of mineral carbonation of waste phosphogypsum assessed by investigating the details of the electrochemical reaction in an electrolytic cell. In a series of experiments, phosphogypsum was shown to exhibit high carbonation reactivity at conditions of room temperature and atmospheric pressure. Results show that preparation of a catholyte solution with an optimal alkalinity of pH 11 will enable production of large quantities of calcium carbonate of purity greater than 90 % at a carbonation rate of 95 %. In comparison with the traditional electrolysis process, membrane electrolysis can significantly reduce the necessary cell voltage required for the reaction to take place, while avoiding the production of chlorine gas. Injection of CO2 in the cathode chamber of the electrochemical cell decreases the pH of the catholyte, thereby depolarizing the cathode and reducing the energy consumption of the entire electrolytic process. This renders the method to be economically feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Azdarpour A, Asadullah M, Mohammadian E, Junin R, Hamidi H, Manan M, Daud ARM (2015) Mineral carbonation of red gypsum via pH-swing process: effect of CO2 pressure on the efficiency and products characteristics. Chem Eng J 264:425–436

    Article  Google Scholar 

  • Balucan RD, Dlugogorski BZ (2013) Thermal activation of antigorite for mineralization of CO2. Environ Sci Technol 47(1):182–190

    Article  Google Scholar 

  • Board on Energy and Environmental Systems National Research Council, Division on Engineering and Physical Sciences National Research Council, & Washington National Academy of Engineering (2004) The hydrogen economy: opportunities, costs, barriers, and R&D needs. National Academies Press, Washington, DC

    Google Scholar 

  • Calin MR, Radulescu I, Calin MA (2015) Measurement and evaluation of natural radioactivity in phosphogypsum in industrial areas from Romania. J Radioanal Nucl Chem 304(3):1303–1312

    Article  Google Scholar 

  • Cardenas-Escudero C, Morales-Florez V, Perez-Lopez R, Santos A, Esquivias L (2011) Procedure to use phosphogypsum industrial waste for mineral CO2 sequestration. J Hazard Mater 196:431–435

    Article  Google Scholar 

  • Ding W, Fu L, Ouyang J, Yang H (2014) CO2 mineral sequestration by wollastonite carbonation. Phys Chem Miner 41(7):489–496

    Article  Google Scholar 

  • Gadikota G, Matter J, Kelemen P, A-hA Park (2014) Chemical and morphological changes during olivine carbonation for CO2 storage in the presence of NaCl and NaHCO3. Phys Chem Chem Phys 16(10):4679–4693

    Article  Google Scholar 

  • Geerlings H, Zevenhoven R (2013) CO2 mineralization-bridge between storage and utilization of CO2. Ann Rev Chem Biomol Eng 4:103–117

    Article  Google Scholar 

  • Gilliam RJ, Boggs BK, Decker V, Kostowskyj MA, Gorer S, Albrecht TA, Way JD, Kirk DW, Bardd AJ (2012) Low voltage electrochemical process for direct carbon dioxide sequestration. J Electrochem Soc 159(5):B627–B628

    Article  Google Scholar 

  • Gyu Lee M, Jang YN, Won Ryu K, Kim W, Bang JH (2012) Mineral carbonation of flue gas desulfurization gypsum for CO2 sequestration. Energy 47:370–377

    Article  Google Scholar 

  • House KZ, House CH, Schrag DP, Aziz MJ (2007) Electrochemical acceleration of chemical weathering as an energetically feasible approach to mitigating anthropogenic climate change. Environ Sci Technol 41(24):8464–8470

    Article  Google Scholar 

  • Huntzinger DN, Gierke JS, Sutter LL, Kawatra SK, Eisele TC (2009) Mineral carbonation for carbon sequestration in cement kiln dust from waste piles. J Hazard Mater 168(1):31–37

    Article  Google Scholar 

  • Juttner K, Galla U, Schmieder H (2000) Electrochemical approaches to environmental problems in the process industry. Electrochim Acta 45(15–16):2575–2594

    Article  Google Scholar 

  • Kumar S (2002) A perspective study on fly ash-lime-gypsum bricks and hollow blocks for low cost housing development. Constr Build Mater 16(8):519–525

    Article  Google Scholar 

  • Lackner KS, Wendt CH, Butts DP, Joyce EL, Sharp DH (1995) Carbon dioxide disposal in carbonate minerals. Energy 20(11):1153–1170

    Article  Google Scholar 

  • Ma J, Yoon R-H (2013) Use of reactive species in water for CO2 mineralization. Energy Fuels 27(8):4190–4198

    Article  Google Scholar 

  • Marović G, Senčar J (1995) 226 Ra and possible water contamination due to phosphate fertilizer production. J Radioanal Nucl Chem 200(1):9–18

    Article  Google Scholar 

  • Montes-Hernandez G, Perez-Lopez R, Renard F, Nieto JM, Charlet L (2009) Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash. J Hazard Mater 161(2–3):1347–1354

    Article  Google Scholar 

  • Olajire AA (2013) A review of mineral carbonation technology in sequestration of CO2. J Pet Sci Eng 109:364–392

    Article  Google Scholar 

  • Parreira AB, Kobayashi ARK, Silvestre OB (2003) Influence of Portland cement type on unconfined compressive strength and linear expansion of cement-stabilized phosphogypsum. J Environ Eng 129(10):956–960

    Article  Google Scholar 

  • Pérez-Moreno SM, Gázquez MJ, Bolívar JP (2015) CO2 sequestration by indirect carbonation of artificial gypsum generated in the manufacture of titanium dioxide pigments. Chem Eng J 262:737–746

    Article  Google Scholar 

  • Plasynski SI, Litynski JT, Mcilvried HG (2009) Progress and new developments in carbon capture and storage. Crit Rev Plant Sci 28(3):123–138

    Article  Google Scholar 

  • Prigiobbe V, Polettini A, Baciocchi R (2009) Gas–solid carbonation kinetics of air pollution control residues for CO2 storage. Chem Eng J 148(2–3):270–278

    Article  Google Scholar 

  • Rahmani O, Junin R, Tyrer M, Mohsin R (2014) Mineral carbonation of red gypsum for CO2 sequestration. Energy Fuels 28(9):5953–5958

    Article  Google Scholar 

  • Rau GH (2008) Electrochemical splitting of calcium carbonate to increase solution alkalinity: implications for mitigation of carbon dioxide and ocean acidity. Environ Sci Technol 42(23):8935–8940

    Article  Google Scholar 

  • Rau GH, Carroll SA, Bourcier WL, Singleton MJ, Smith MM, Aines RD (2013) Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production. Proc Natl Acad Sci USA 110(25):10095–10100

    Article  Google Scholar 

  • Singh M, Garg M (1999) Cementitious binder from fly ash and other industrial wastes. Cem Concr Res 29(3):309–314

    Article  Google Scholar 

  • Suyadal Y, Öztürk A, Oguz H, Berber R (1997) Thermochemical decomposition of phosphogypsum with oil shale in a fluidized-bed reactor: a kinetic study. Ind Eng Chem Res 36:2849–2854

    Article  Google Scholar 

  • Torgal FP, Miraldo S, Labrincha J, De Brito J (2012) An overview on concrete carbonation in the context of eco-efficient construction: evaluation, use of SCMs and/or RAC. Constr Build Mater 36:141–150

    Article  Google Scholar 

  • Wang H, Sun N, Donahoe RJ (2009) Carbon dioxide sequestration with flue gas desulfurization (FGD) gypsum. In: 2009 International conference on environmental science and information application technology, pp 673–676

  • Werner M, Hariharan S, Zingaretti D, Baciocchi R, Mazzotti M (2014) Dissolution of dehydroxylated lizardite at flue gas conditions: I. Experimental study. Chem Eng J 241:301–313

    Article  Google Scholar 

  • Wuebbles DJ, Jain AK (2001) Concerns about climate change and the role of fossil fuel use. Fuel Process Technol 71:99–119

    Article  Google Scholar 

  • Xie H, Wang Y, Chu W, Ju Y (2014) Mineralization of flue gas CO2 with coproduction of valuable magnesium carbonate by means of magnesium chloride. Chin Sci Bull 59(23):2882–2889

    Article  Google Scholar 

  • Yan X, Ma L, Zhu B, Zheng D, Lian Y (2014) Reaction mechanism process analysis with phosphogypsum decomposition in multiatmosphere control. Ind Eng Chem Res 53(50):19453–19459

    Article  Google Scholar 

  • Yang J, Liu W, Zhang L, Xiao B (2009) Preparation of load-bearing building materials from autoclaved phosphogypsum. Constr Build Mater 23(2):687–693

    Article  Google Scholar 

  • Zhao H, Li H, Bao W, Wang C, Li S, Lin W (2015) Experimental study of enhanced phosphogypsum carbonation with ammonia under increased CO2 pressure. J CO2 Util 11:10–19

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (51120145001, 51254002), the National Natural Science Funds for Distinguished Young Scholars (51125017) and the Natural Basic Research Projects of China (2011CB201201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlong Wang.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “Environment and Health in China II”, guest edited by Tian-Xiang Yue, Cui Chen, Bing Xu and Olaf Kolditz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Wang, J., Hou, Z. et al. CO2 sequestration through mineral carbonation of waste phosphogypsum using the technique of membrane electrolysis. Environ Earth Sci 75, 1216 (2016). https://doi.org/10.1007/s12665-016-6009-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6009-3

Keywords

Navigation