Skip to main content
Log in

Creep behavior of slip zone soil of the Majiagou landslide in the Three Gorges area

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The creep properties of slip zone soil are critical to deformation prediction and slope stability analysis. A series of triaxial drained creep tests were conducted on the slip band soil from a creeping landslide. The results indicate that soil creep occurs in two stages, with confining and deviatoric stresses being critical factors. The long-term strength of the soil was estimated to be 60–75 % of the conventional strength according to the isochronous curves. The soil creep characteristics were used to predict the creep strain using both the Burgers and the Singh–Mitchell model, and large discrepancies were found between the predicted strain and test results. Accordingly, a new empirical model based on the Morgan Mercer Flodin growth model has been developed to describe the creep behavior of gravely clay in the slip zone. Four parameters of this model are estimated by nonlinear regression. The deformations predicted by this model are in reasonable agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Augustesen A, Liingaard M, Lade P (2004) Evaluation of time-dependent behavior of soils. Int J Geomech 4(3):137–156

    Article  Google Scholar 

  • Bagherzadeh-Khalkhali A, Mirghasemi AA (2009) Numerical and experimental direct shear tests for coarse-grained soils. Particuology 7(1):83–91

    Article  Google Scholar 

  • Barnes HA (2000) A handbook of elementary rheology. University of Wales, Institute of Non Newtonian Fluid Mechanics, Aberystwyth SY23 3BZ

  • Bhuiyan I, Azam S, Khaled S, Patrick Landine (2016) Geotechnical behavior of uranium mill tailings from Saskatchewan, Canada. Int J Min Sci Technol 26(3):369–375

    Article  Google Scholar 

  • Bizjak KF, Zupančič A (2009) Site and laboratory investigation of the Slano blato landslide. Eng Geol 105:171–185

    Article  Google Scholar 

  • Bozzano F, Martino S, Montagna A (2012) A back analysis of a rock landslide to infer rheological parameters. Eng Geol 131–132:45–56

    Article  Google Scholar 

  • Crosta GB, di Prisco C, Frattini P, Frigerio G, Castellanza R, Agliardi F (2014) Chasing a complete understanding of the triggering mechanisms of a large rapidly evolving rockslide. Landslides 5:747–764

    Article  Google Scholar 

  • Darrow MM, Bray MT, Huang SL (2012) Analysis of a deep-seated landslide in permafrost, Richardson highway, South-Central Alaska. Environ Eng Geosci 18(3):261–280

    Article  Google Scholar 

  • Deng Q, Zhu Z, Cui Z, Wang X (2000) Mass rock creep and landsliding on the Huangtupo slope in the reservoir area of the Three Gorges Project, Yangtze River, China. Eng Geol 58(1):67–83

    Article  Google Scholar 

  • Desai CS, Samtani NC, Vulliet L (1995) Constitutive modeling and analysis of creeping slopes. J Geotech Eng 121(1):43–56

    Article  Google Scholar 

  • Di Maio C, Vassallo R, Vallario M (2013) Plastic and viscous shear displacements of a deep and very slow landslide in stiff clay formation. Eng Geol 165:53–66

    Article  Google Scholar 

  • D’Odorico P, Fagherazzi S (2003) A probabilistic model of rainfall-triggered shallow landslides in hollows: A long-term analysis. Water Resour Res 39(9):ESG61–ESG614

    Google Scholar 

  • Feng J, Chuhan Z, Gang W, Guanglun W (2003) Creep modeling in excavation analysis of a high rock slope. J Geotech Geoenviron Eng 129(9):849–857

    Article  Google Scholar 

  • Furuya G, Sassa K, Hiura H, Fukuoka H (1999) Mechanism of creep movement caused by landslide activity and underground erosion in crystalline schist, Shikoku Island, southwestern Japan. Eng Geol 53:311–325

    Article  Google Scholar 

  • Gao H, Chen Y, Liu H, Liu J, Chu J (2012) Creep behavior of EPS composite soil. Sci China Technol Sci 55(11):3070–3080

    Article  Google Scholar 

  • Gasc-Barbier M, Chanchole S, Bérest P (2004) Creep behavior of Bure clayey rock. Appl Clay Sci 26:449–458

    Article  Google Scholar 

  • Gauer P, Kvalstad TJ, Forsberg CF, Bryn P, Berg K (2005) The last phase of the Storegga Slide: simulation of retrogressive slide dynamics and comparison with slide-scar morphology. Mar Petrol Geol 22:171–178

    Article  Google Scholar 

  • Geertsema M, Hungr O, Schwab JW, Evans SG (2006) A large rockslide–debris avalanche in cohesive soil at Pink Mountain, northeastern British Columbia, Canada. Eng Geol 83:64–75

    Article  Google Scholar 

  • Ham G (2006) Numerical simulation and engineering-geological assessment of a creeping slope in the Alps. Dissertation, Universität Karlsruhe (TH)

  • Ham G, Rohn J, Meier T, Czurda K (2006) A method for modeling of a creeping slope with a visco-hypoplastic material law. Math Geol 38(6):711–719

    Article  Google Scholar 

  • Ham T, Nakata Y, Orense R, Hyodo M (2010) Influence of gravel on the compression characteristics of decomposed granite soil. J Geotech Geoenviron Eng 136(11):1574–1577

    Article  Google Scholar 

  • Ishikawa T, Miura S (2011) Influence of freeze-thaw action on deformation-strength characteristics and particle crushability of volcanic coarse-grained soils. Soils Found 51(5):785–799

    Article  Google Scholar 

  • Jarman D, Calvet M, Corominas J, Delmas M, Gunnel Y (2014) Large-scale rock slope failures in the Eastern Pyrenees: identifying a sparse but significant population in paraglacial and parafluvial contexts. Geogr Ann A Phys. Geogr 96:357–391

    Article  Google Scholar 

  • Jian W, Wang Z, Yin K (2009) Mechanism of the Anlesi landslide in the Three Gorges Reservoir, China. Eng Geol 108:86–95

    Article  Google Scholar 

  • Karimpour H (2012) Time effects in relation to crushing in sand. Dissertation, The Catholic University of America

  • Karimpour H, Lade PV (2010) Time effects relate to crushing in sand. J Geotech Geoenviron Eng 136(9):1209–1219

    Article  Google Scholar 

  • Karimpour H, Lade PV (2013) Creep behavior in Virginia Beach sand. Can Geotech J 50(11):1159–1178

    Article  Google Scholar 

  • Klimeš J, Yepes J, Becerril L (2016) Development and recent activity of the San Andrés landslide on El Hierro, Canary Islands, Spain. Geomorphology 261:119–131

    Article  Google Scholar 

  • Kondraivendhan B, Divsholi BS, Teng S (2013) Estimation of strength, permeability and hydraulic diffusivity of pozzolana blended concrete through pore size distribution. J Adv Concr Technol 11(9):230–237

    Article  Google Scholar 

  • Krautblatter M, Funk D, Günzel FK (2013) Why permafrost rocks become unstable: a rock-ice-mechanical model in time and space. Earth Surf Proc Land 38(8):876–887

    Article  Google Scholar 

  • Ladanyi B (2006) Creep of frozen slopes and ice-filled rock joints under temperature variation. Can J Civil Eng 33(6):719–725

    Article  Google Scholar 

  • Lade PV (2007) Experimental study and analysis of creep and stress relaxation in granular materials. Proceedings of Sessions of Geo-Denver 2007: Advances in Measurement and Modeling of Soil Behavior (GSP 173). Reston, USA, pp 1–11

    Google Scholar 

  • Lade PV, Karimpour H (2010) Static fatigue controls particle crushing and time effects in granular materials. Soils Found 50(5):573–583

    Article  Google Scholar 

  • Lade PV, Liu C (1998) Experimental Study of Drained Creep Behavior of Sand. J. Eng. Mech. 124(8):912–920

    Article  Google Scholar 

  • Lade PV, Liggio C, Yamamuro JA (1998) Effects of non-plastic fines on minimum and maximum Void ratios of sand. Geotech Test J 21(4):336–347

    Article  Google Scholar 

  • Lade PV, Liggio CD, Nam J (2009) Strain rate, creep and stress drop-creep experiments on crushed coral sand. J Geotech Geoenviron Eng 135(7):941–953

    Article  Google Scholar 

  • Liingaard M, Augustesen A, Lade PV (2004) Characterization of models for time-dependent behavior of soils. Int J Geomech 4(3):157–177

    Article  Google Scholar 

  • Manzella I, Labiouse V (2009) Flow experiments with gravel and blocks at small scale to investigate parameters and mechanisms involved in rock avalanches. Eng Geol 109:146–158

    Article  Google Scholar 

  • Mesri G, Febres-Cordero E, Shields DR (1981) Shear stress-strain-time behaviour of clays. Géotechnique 31(4):537–552

    Article  Google Scholar 

  • Mitchell JK (2008) Aging in sand-a continuing enigma? In: Proceedings of the 6th international conference on case histories in geotechnical engineering, Arlington, USA, pp 1–21

  • Morgan PH, Mercer IP, Flodin NW (1975) General model for nutritional responses of higher organisms. In: Proceedings of the National Academy of Science, USA, pp 4327–4331

  • Organtini P, Russo F (2013) Forecast of CMOS imagers yield learning by the Gompertz model. IEEE Trans Semiconduct Manuf 26(3):393–399

    Article  Google Scholar 

  • Pandey KN, Chand S (2004) Fatigue crack growth model for constant amplitude loading. Fatigue Fract Eng Mater Struct 27(6):459–472

    Article  Google Scholar 

  • Peng T, Wang C, Hsu S, Wang G, Su T, Lee J (2009) Geomechanical studies on slow slope movements in Parma Apennine. Eng Geol 109:31–44

    Article  Google Scholar 

  • Petley DN, Higuchi T, Petley DJ, Bulmer MH, Carey J (2005) Development of progressive landslide failure in cohesive materials. Geology 33(3):201–204

    Article  Google Scholar 

  • Phoon KK, Tan TS, Chong PC (2007) Numerical simulation of Richards equation in partially saturated porous media: under-relaxation and mass balance. Geotech Geol Eng 25:525–541

    Article  Google Scholar 

  • Pirulli M, Colombo A, Scavia C (2011) From back-analysis to run-out prediction: a case study in the Western Italian Alps. Landslides 8(2):159–170

    Article  Google Scholar 

  • Qi S, Yan F, Wang S, Xu R (2006) Characteristics, mechanism and development tendency of deformation of Maoping landslide after commission of Geheyan reservoir on the Qingjiang River, Hubei Province, China. Eng Geol 86(1):37–51

    Article  Google Scholar 

  • Rutter EH, Green S (2011) Quantifying creep behaviour of clay-bearing rocks below the critical stress state for rapid failure: Mam Tor landslide, Derbyshire, England. J Geol Soc Lond 168:359–372

    Article  Google Scholar 

  • Sasaki Y, Fujii A, Asai K (2000) Soil creep process and its role in debris slide generation-field measurements on the north side of Tsukuba Mountain in Japan. Eng Geol 56:163–183

    Article  Google Scholar 

  • Seber GAF, Wild CJ (2003) Nonlinear regression. Wiley Interscience, Hoboken

    Google Scholar 

  • Semple RM (1973) The effect of time-dependent properties of altered rock on the tunnel support requirements. Dissertation, University of Illinois, Urbana, III

  • Singh A, Mitchell JK (1969) General stress-strain-time function for soils. J Soil Mech Found Div 95:1526–1527

    Google Scholar 

  • Tan TK, Shi ZO, Yu ZH, Yang WX (1989) Dilatancy creep and relaxation of brittle rocks measured with the 8000 kn multipurpose triaxial apparatus. Phys Earth Planet Inter 55(3–4):335–352

    Google Scholar 

  • Tang M, Wang Z (2008) Experimental study on rheological deformation and stress properties of limestone. J Cent South Univ Technol 15(s1):475–478

    Article  Google Scholar 

  • Tjørve E (2003) Shapes and functions of species–area curves: a review of possible models. J Biogeogr 30(6):827–835

    Article  Google Scholar 

  • Ulusay R, Aydan O, Kilic R (2007) Geotechnical assessment of the 2005 Kuzulu landslide (Turkey). Eng Geol 89:112–128

    Article  Google Scholar 

  • Venkatarama Reddy BV, Latha MS (2013) Influence of soil grading on the characteristics of cement stabilised soil compacts. Mater Struct. doi:10.1617/s11527-013-0142-1

    Google Scholar 

  • Vlcko J, Greif V, Grof V, Jezny M, Petro L, Brcek M (2009) Rock displacement and thermal expansion study at historic heritage sites in Slovakia. Environ Geol 58(8):1727–1740

    Article  Google Scholar 

  • Wang Z (2008) Rheological experimental study and mechanism research on gentle dipped landslides of Jurassic red strata in Wanzhou city. Dissertation, China University of Geosciences

  • Wartman J, Montgomery DR, Scott Anderson (2016) The 22 March 2014 Oso landslide, Washington, USA. Geomorphology 253:275–288

    Article  Google Scholar 

  • Welkner D, Eberhardt E, Hermanns RL (2010) Hazard investigation of the Portillo Rock Avalanche site, central Andes, Chile, using an integrated field mapping and numerical modelling approach. Eng Geol 114:278–297

    Article  Google Scholar 

  • Yan S, Xiang W, Tang H, Man Z, Xu R (2008) Research on creep behavior of slip band soil of Dayantang landslide. Rock Soil Mech 29(1):58–68

    Google Scholar 

  • Yang T, Xu T, Rui R, Tang C (2004) The deformation mechanism of a layered creeping coal mine slope and the associated stability assessments. Int J Rock Mech Min 41:827–832

    Article  Google Scholar 

  • Yu M, Mao XB, Hu XY (2016) Shear creep characteristics and constitutive model of limestone. Int J Min Sci Technol 26(3):423–428

    Article  Google Scholar 

  • Zhang X, Tan JH (2013) Research on Majiagou landslide stability analysis and control design. In: Proceedings of the 2012 international conference on cybernetics and informatics. Springer, New York, 2014:595–602

Download references

Acknowledgments

This research was supported by the National Basic Research Program of China (973 Program, Grant No. 2011CB710604) and Zhejiang Natural Science Foundation of China (Grant No. LY14D020001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miaojun Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Tang, H., Wang, M. et al. Creep behavior of slip zone soil of the Majiagou landslide in the Three Gorges area. Environ Earth Sci 75, 1199 (2016). https://doi.org/10.1007/s12665-016-6002-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6002-x

Keywords

Navigation