Environmental Earth Sciences

, 75:1244 | Cite as

Simulation of temperature effects on groundwater flow, contaminant dissolution, transport and biodegradation due to shallow geothermal use

Thematic Issue
Part of the following topical collections:
  1. Subsurface Energy Storage

Abstract

The quantitative prognosis and assessment of possible impacts of temperature changes in groundwater due to the geothermal use of the shallow subsurface in urban regions requires process-based numerical models of coupled non-isothermal groundwater flow, heat and mass transport processes and biogeochemical reactive processes. This work therefore aims at developing and implementing numerical methods as well as the required parameterizations to simulate the effects of temperature increases due to heat injection in a groundwater aquifer. Parameter and process models for fluid flow, solute transport, mass transfer processes between aqueous and non-aqueous phases, and microbial growth coupled to contaminant biodegradation are expressed as functions of temperature for this purpose. The developed model is implemented in the OpenGeoSys code and applied in a set of benchmark simulations, where thermal impacts of borehole heat exchangers (BHE) are simulated in an aquifer with a TCE contamination in a residual NAPL source zone. The thermal plumes emitted by the BHEs result in a focusing of groundwater flow due to a viscosity reduction of the heated water. The local increase in groundwater flow as well as an increase in TCE solubility with temperature leads to increased TCE emissions from the source zone. At the same time, increases in microbial growth rates allow for higher TCE degradation rates by reductive dechlorination. Results of the benchmark simulations allow insights into the interactions of the individual processes and potential benefits or conflicts of geothermal use of the subsurface and natural attenuation processes at contaminated sites. Also, the benchmark simulations can be used as test cases for intercomparison and validation of reactive transport codes.

Keywords

Heat transport Non-isothermal groundwater flow Contaminant biodegradation Benchmarking OpenGeoSys 

Supplementary material

12665_2016_5976_MOESM1_ESM.pdf (454 kb)
Supplementary material 1 (PDF 454 kb)

References

  1. Ballarini E, Bauer S, Eberhardt C, Beyer C (2014a) Evaluation of the role of heterogeneities on transverse mixing in bench-scale tank experiments by numerical modeling. Groundwater 52:368–377. doi:10.1111/gwat.12066 CrossRefGoogle Scholar
  2. Ballarini E, Beyer C, Bauer RD, Griebler C, Bauer S (2014b) Model based evaluation of a contaminant plume development under aerobic and anaerobic conditions in 2D bench-scale tank experiments. Biodegradation 25:351–371CrossRefGoogle Scholar
  3. Bauer S, Beyer C, Kolditz O (2006) Assessing measurement uncertainty of first-order degradation rates in heterogeneous aquifers. Water Resour Res 42:W01420CrossRefGoogle Scholar
  4. Bauer RD, Rolle M, Bauer S, Eberhardt C, Grathwohl P, Kolditz O, Meckenstock RU, Griebler C (2009) Enhanced biodegradation by hydraulic heterogeneities in petroleum hydrocarbon plumes. J Contam Hydrol 105:56–68CrossRefGoogle Scholar
  5. Bauer D, Marx R, Nußbicker-Lux J, Ochs F, Heidemann W, Müller-Steinhagen H (2010) German central solar heating plants with seasonal heat storage. Sol Energy 84:612–623CrossRefGoogle Scholar
  6. Bauer S, Beyer C, Dethlefsen F, Dietrich P, Duttmann R, Ebert M, Feeser V, Görke U, Köber R, Kolditz O, Rabbel W, Schanz T, Schäfer D, Würdemann H, Dahmke A (2013) Impacts of the use of the geological subsurface for energy storage: an investigation concept. Environ Earth Sci 70:3935–3943CrossRefGoogle Scholar
  7. Beyer C, Bauer S, Kolditz O (2006) Uncertainty assessment of contaminant plume length estimates in heterogeneous aquifers. J Contam Hydrol 87:73–95CrossRefGoogle Scholar
  8. Bonte M, van Breukelen BM, Stuyfzand PJ (2013a) Temperature-induced impacts on groundwater quality and arsenic mobility in anoxic aquifer sediments used for both drinking water and shallow geothermal energy production. Water Res 47:5088–5100CrossRefGoogle Scholar
  9. Bonte M, Röling WFM, Zaura E, van der Wielen PWJJ, Stuyfzand PJ, van Breukelen BM (2013b) Impacts of shallow geothermal energy production on redox processes and microbial communities. Environ Sci Technol 47:14476–14484CrossRefGoogle Scholar
  10. Boockmeyer A, Bauer S (2014) High-temperature heat storage in geological media: high-resolution simulation of near-borehole processes. Geotech Lett 4:151–156CrossRefGoogle Scholar
  11. Bradford SA, Abriola LM (2001) Dissolution of residual tetrachloroethylene in fractional wettability porous media: incorporation of interfacial area estimates. Water Resour Res 37:1183–1195CrossRefGoogle Scholar
  12. Brooks RH, Corey AT (1964) Hydraulic properties of porous media. Hydrol. Paper 3. Colorado State Univ., Fort CollinsGoogle Scholar
  13. Butscher C, Huggenberger P, Auckenthaler A, Bänninger D (2011) Risikoorientierte Bewilligung von Erdwärmesonden. Grundwasser 16:13–24CrossRefGoogle Scholar
  14. Carrayrou J, Kern M, Knabner P (2009) Reactive transport benchmark of MoMaS. Comput Geosci 14(3):385–392CrossRefGoogle Scholar
  15. Chen F, Freedman DL, Falta RW, Murdoch LC (2012) Henry’s law constants of chlorinated solvents at elevated temperatures. Chemosphere 86:156–165CrossRefGoogle Scholar
  16. Chiogna G, Eberhardt C, Grathwohl P, Cirpka OA, Rolle M (2009) Evidence of compound-dependent hydrodynamic and mechanical transverse dispersion by multitracer laboratory experiments. Environ Sci Technol 44:668–693Google Scholar
  17. Cirpka OA, Frind EO, Helmig R (1999) Numerical simulation of biodegradation controlled by transverse mixing. J Contam Hydrol 40:159–182CrossRefGoogle Scholar
  18. Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys 17:549CrossRefGoogle Scholar
  19. Energiebilanzen AG (2013) Anwendungsbilanzen für die Endenergiesektoren in Deutschland in den Jahren 2011 und 2012 mit Zeitreihen von 2008 bis 2012. Arbeitsgemeinschaft Energiebilanzen e.VGoogle Scholar
  20. Friis AK, Heimann AC, Jakobsen R, Albrechtsen HJ, Cox E, Bjerg PL (2007) Temperature dependence of anaerobic TCE-dechlorination in a highly enriched Dehalococcoides containing culture. Water Res 41:355–364CrossRefGoogle Scholar
  21. Grathwohl P (1998) Diffusion in natural porous media topics in environmental fluid mechanics. Springer, New YorkGoogle Scholar
  22. He W, Beyer C, Fleckenstein JH, Jang E, Kolditz O, Naumov D, Kalbacher T (2015) A parallelization scheme to simulate reactive transport in the subsurface environment with OGS#IPhreeqc 5.5.7-3.1.2 Geosci Model Dev 8:3333-3348Google Scholar
  23. Heron G, Carroll S, Nielsen SG (2005) Full-scale removal of DNAPL constituents using steam-enhanced extraction and electrical resistance heating. Ground Water Monit Rem 25:92–107CrossRefGoogle Scholar
  24. Hiester U, Müller M, Koschizky HP, Trötschler O, Roland U, Holzer F (2013) Guidelines: in situ thermal treatment (ISTT) for source zone remediation of soil and groundwater. Helmholtz Centre for Environmental Research (UFZ)Google Scholar
  25. Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker DE, Woodward CS (2005) SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers. ACM Trans Math Softw 31:363–396CrossRefGoogle Scholar
  26. Hoes H, Patyn J, Lookman R (2012) The combination of aquifer thermal energy storage (ATES) and groundwater remediation. CityChlor, UtrechtGoogle Scholar
  27. IAPWS (2007) Revised release on the IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam. International Association for the Properties of Water and Steam, LucerneGoogle Scholar
  28. Illangasekare TH, Marr JM, Siegrist RL, Soga K, Glover KC, Moreno-Barbero E, Heiderscheidt JL, Saenton S, Matthew M, Kaplan AR, Kim Y, Dai D, Page JWE (2006) Mass transfer from entrapped DNAPL sources undergoing remediation: characterization methods and prediction tools. SERDP Project No. CU-1294, Colorado School of Mines. Golden, COGoogle Scholar
  29. Imhoff PT, Frizzell A, Miller CT (1997) Evaluation of thermal effects on the dissolution of a nonaqueous phase liquid in porous media. Environ Sci Technol 31:1615–1622CrossRefGoogle Scholar
  30. Islam MA, Edwards EA, Mahadevan R (2010) Characterizing the metabolism of Dehalococcoides with a constraint-based model. PLoS Comput Biol 6(8):e1000887. doi:10.1371/journal.pcbi.1000887 CrossRefGoogle Scholar
  31. Jesußek A, Grandel S, Dahmke A (2013) Impacts of subsurface heat storage on aquifer hydrogeochemistry. Environ Earth Sci 69:1999–2012CrossRefGoogle Scholar
  32. Knauss KG, Dibley MJ, Roald LN, Mew DA, Aines RD (2000) The aqueous solubility of trichloroethene (TCE) and tetrachloroethene (PCE) as a function of temperature. Appl Geochem 15:501–512CrossRefGoogle Scholar
  33. Kolditz O, Bauer S (2004) A process-oriented approach to computing multi-field problems in porous media. J Hydroinf 6:225–244Google Scholar
  34. Kolditz O, Ratke R, Diersch HJ, Zielke W (1998) Coupled groundwater flow and transport: 1. verification of variable density flow and transport models. Adv Water Resour 21:27–46CrossRefGoogle Scholar
  35. Kolditz O, Görke UJ, Shao H, Wang W (eds) (2012) Thermo-hydromechanical–chemical processes in porous media: benchmarks and examples (lecture notes in computational science and engineering). Springer, BerlinGoogle Scholar
  36. Kolditz O, Görke UJ, Shao H, Wang W, Bauer S (eds) (2016) Thermo-hydro-mechanical–chemical processes in fractured porous media: modelling and benchmarking—benchmarking initiatives. Springer, BerlinGoogle Scholar
  37. Krol MM, Johnson RL, Sleep BE (2014) An analysis of a mixed convection associated with thermal heating in contaminated porous media. Sci Total Environ 499:7–17CrossRefGoogle Scholar
  38. Kueper BH, Abbott W, Farquhar G (1989) Experimental observations of multiphase flow in heterogeneous porous media. J Contam Hydrol 5:83–95CrossRefGoogle Scholar
  39. Li D, Bauer S, Benisch K, Graupner BJ, Beyer C (2014) OpenGeoSys-ChemApp: a coupled simulator for reactive transport in multiphase systems—code development and application at a representative CO2 storage formation in Northern Germany. Acta Geotech 9:67–79CrossRefGoogle Scholar
  40. Lide DR (2005) CFC handbook of chemistry and physics, 85th edn. Taylor & Francis, Boca RatonGoogle Scholar
  41. Miller DJ, Hawthorne SB (1999) Solubility of liquid organics of environmental interest in subcritical (hot/liquid) water from 298 K to 473 K. J Chem Eng 45:78–81Google Scholar
  42. Molina-Giraldo N, Bayer P, Blum P (2011) Evaluating the influence of thermal dispersion on temperature plumes from geothermal systems using analytical solutions. Int J Therm Sci 50:1223–1231CrossRefGoogle Scholar
  43. Ni Z, van Gaans P, Smit M, Rijnaarts H, Grotenhuis T (2015) Biodegradation of cis-1,2-dichloroethene in simulated underground thermal energy storage systems. Environ Sci Technol 49:13519–13527CrossRefGoogle Scholar
  44. Nußbicker-Lux J (2010) Simulation und Dimensionierung solar unterstützter Nahwärmesysteme mit Erdsonden-Wärmespeicher. Dissertation, University of StuttgartGoogle Scholar
  45. Nußbicker-Lux J, Drück H (2012) Solare Nahwärmeversorgung in Crailsheim mit 7500 m2 Kollektorfläche. OTTI—22. Symposium Thermische Solarenergie 09.-11.05.2012, Kloster BanzGoogle Scholar
  46. Park CH, Boettcher N, Wang W, Kolditz O (2011) Are upwind techniques in multi-phase flow models necessary? J Comput Phys 230:8304–8312CrossRefGoogle Scholar
  47. PlanEnergi (2013) Boreholes in Brædstrup. Final reportGoogle Scholar
  48. Popp S, Beyer C, Dahmke A, Bauer S (2015) Model development and numerical simulation of a seasonal heat storage in a contaminated shallow aquifer. Energy Procedia 76:361–370CrossRefGoogle Scholar
  49. Popp S, Beyer C, Dahmke A, Koproch N, Köber R, Bauer S (2016) Temperature dependent dissolution of residual non-aqueous phase liquids—model development and verification. Environ Earth Sci 75:953. doi:10.1007/s12665-016-5743-x CrossRefGoogle Scholar
  50. Rolle M, Eberhardt C, Chiogna G, Cirpka OA, Grathwohl P (2009) Enhancement of dilution and transverse reactive mixing in porous media: experiments and model based interpretation. J Contam Hydrol 110:130–142CrossRefGoogle Scholar
  51. Rosso L, Lobry JR, Bajard S, Flandrois JP (1995) Convenient model to describe the combined effects of temperature and pH on microbial growth. Appl Environ Microbiol 61:610–616Google Scholar
  52. Sanner B, Kabus F, Seibt P, Bartels J (2005) Underground thermal energy storage for the German parliament in Berlin, system concept and operational experiences. World Geothermal Congress 2005, Antalya, TurkeyGoogle Scholar
  53. Schout G, Drijver B, Gutierrez-Neri M, Schotting R (2014) Analysis of recovery efficiency in high-temperature aquifer thermal energy storage—a Rayleigh-based method. Hydrogeol J 22:281–291CrossRefGoogle Scholar
  54. Sommer W, Drijver B, Verburg R, Slenders H, de Vries E, Dinkla I, Leusbrock I, Grotenhuis T (2013) Combining shallow geothermal energy and groundwater remediation. European geothermal congress 2013, Pisa, ItalyGoogle Scholar
  55. Steefel CI, MacQuarrie KTB (1996) Approaches to modeling of reactive transport in porous media. Rev Mineral Geochem 34:85–129Google Scholar
  56. Steefel CI, Yabusaki SB, Mayer KU (2015) Reactive transport benchmarks for subsurface environmental simulation. Comput Geosci 19:439–443CrossRefGoogle Scholar
  57. Tsang CF, Stephansson O, Jing L, Kautsky F (2009) DECOVALEX project: from 1992 to 2007. Environ Geol 57(6):1221–1237CrossRefGoogle Scholar
  58. van Genuchten MT (1980) A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898CrossRefGoogle Scholar
  59. VDI (2010) Thermal use of the underground—fundamentals, approvals, environmental aspects. VDI 4640 Part IGoogle Scholar
  60. Werth CJ, Cirpka OA, Grathwohl P (2006) Enhanced mixing and reaction through flow focusing in heterogeneous porous media. Water Resour Res 42:W12414CrossRefGoogle Scholar
  61. Wilke CR, Chang P (1955) Correlation of diffusion coefficients in dilute solutions. AIChE J 1:264–270CrossRefGoogle Scholar
  62. Xie M, Bauer S, Kolditz O, Nowak T, Shao H (2006) Numerical simulation of reactive processes in an experiment with partially saturated bentonite. J Contam Hydrol 83:122–147CrossRefGoogle Scholar
  63. Yaws CL (2009) Transport properties of chemicals and hydrocarbons—viscosity, thermal conductivity, and diffusivity of C1 to C100 organics and Ac to Zr inorganics. William Andrew Inc., NorwichGoogle Scholar
  64. Zuurbier KG, Hartog N, Valstar J, Post VEA, van Breukelen BM (2013) The impact of low-temperature seasonal aquifer thermal energy storage (SATES) systems on chlorinated solvent contaminated groundwater: modeling of spreading and degradation. J Contam Hydrol 147:1–13CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of GeosciencesUniversity of KielKielGermany

Personalised recommendations