Skip to main content

Advertisement

Log in

Restoration of ecosystem functions and efficiency control: case study of the Danube floodplain between Neuburg and Ingolstadt (Bavaria/Germany)

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The Danube floodplain is disconnected from its river, and natural water dynamic is inhibited by regulation and hydropower generation. Notwithstanding the hydropower dams, this restoration project aims to bring back natural water dynamics to the floodplain by a new floodplain stream, by ecological flooding and by temporary groundwater drawdown during summer months. Due to the new floodplain stream, former fluctuating water zones which are habitat for the target species Oenanthe aquatica changed to aquatic habitats which are also required. The measure groundwater drawdown aims to enhance the abiotic conditions for this pioneer species of muddy streambanks. The scientific efficiency control compares the situation before restoration implementation with the effects of three different types of groundwater drawdown. For these three types, the hydrological situation was investigated, and the effects on the potential area and on the occurrence of O. aquatica were mapped. The outcome is that one type can enhance germination of O. aquatica, but is detrimental for aquatic organisms. The other type is able to provide the same suitable conditions for O. aquatica, without severely harming the aquatic habitats. The third type cannot reach the needed low water levels and is therefore not a comparable option. The results show that an interdisciplinary monitoring is able to develop a measure suitable for both competing habitat types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amoros C, Bornette G (2002) Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshw Biol 47(4):761–776

    Article  Google Scholar 

  • Arthington AH (2012) Environmental flows: saving rivers in the third millennium. Freshwater ecology series, vol 4. University of California Press, Berkeley

    Book  Google Scholar 

  • Brunotte E, Dister E, Günther-Diringer D, Koenzen U, Mehl D (2009) Flussauen in Deutschland–Erfassung und Bewertung des Auenzustandes. Naturschutz und Biologische Vielfalt 87

  • Buijse AD, Coops H, Staras M, Jans LH, van Geest GJ, Grift RE et al (2002) Restoration strategies for river floodplains along large lowland rivers in Europe. Freshw Biol 47:889–907

    Article  Google Scholar 

  • Cluer B, Thorne C (2014) A stream evolution model integrating habitat and ecosystem benefits. River Res Appl 30(2):135–154

    Article  Google Scholar 

  • Crawford RMM (1996) Whole plant adaptations to fluctuating water tables. Folia Geobot Phytotaxon 31:7–24

    Article  Google Scholar 

  • Fischer P. (2016): Fluviale Morphodynamik und eigendynamische Entwicklung. Untersuchungen an einem naturnahen Umgehungsbach im Auwald zwischen Neuburg und Ingolstadt. Dissertation Catholic University of Eichstaett-Ingolstadt

  • Gerristen AL, Haasnoot M, Hoffmann CC., Kotowski W, Leenen EJTM, Okruszko T, Penning WE, Piórkowski H, Platteeuw M, Querner EP, Siedlecki T, Swart EOAM (2006) How to use floodplains for flood risk reduction. Ecoflood Guidelines. Directorate-General for Research Sustainable Development, Global Change and Ecosystems. European Communities, Belgium

  • Gowing DJG, Spoor G (1998) The effect of water table depth on the distribution of plant species on lowland wet grassland. UK Floodplains 185:196

    Google Scholar 

  • Henszey RJ, Pfeiffer K, Keough JR (2004) Linking surface-and ground-water levels to riparian grassland species along the Platte River in Central Nebraska, USA. Wetlands 24(3):665–687

    Article  Google Scholar 

  • Hughes FMR, Colston A, Mountford JO (2005) Restoring riparian ecosystems: the challenge of accommodating variability and designing restoration trajectories. Ecol Soc 10(1):12

    Article  Google Scholar 

  • Ilg C, Dziock F, Foeckler F, Follner K, Gerisch M, Glaeser J, Rink A, Schanowski A, Scholz M, Deichner O, Henle K (2008) Long-term reactions of plants and macorinvertebrates to extreme floods in floodplain grasslands. Ecology 89:2392–2398

    Article  Google Scholar 

  • Jensch D, Poschlod P (2008) Germination ecology of two closely related taxa in the genus Oenanthe: fine tuning for the habitat? Aquat Bot 89(4):345–351

    Article  Google Scholar 

  • Konrad CP, Olden JD, Lytle DA, Melis TS, Schmidt JC, Bray EN, Freeman MC, Gido KB, Hemphill NP, Kennard MJ, McMullen LE, Mims MC, Pyron M, Robinson CT, Williams JG (2011) Large-scale flow experiments for managing river systems. Bioscience 61(12):948–959

    Article  Google Scholar 

  • Lasne E, Lek S, Laffaille P (2007) Patterns in fish assemblages in the Loire floodplain: the role of hydrological connectivity and implications for conservation. Biol Conserv 139(3):258–268

    Article  Google Scholar 

  • Leyer I (2006) Dispersal, diversity and distribution patterns in pioneer vegetation: the role of river-floodplain connectivity. J Veg Sci 17(4):407–416

    Article  Google Scholar 

  • LfL (Bayerische Landesanstalt für Landwirtschaft) (2015) Agrarmeteorologie_Bayern. http://www.am.rlp.de/Internet/global/startpage.nsf/87f72373f4207cacc1256df2003dcfff/bea5dcab417673b7c12574c2002b2006?. Open document. Accessed 13 July 2015

  • LfU (Bayerisches Landesamt für Umwelt) (2016) Hochwasser-Nachrichtendienst Bayern. http://www.hnd.bayern.de/pegel/donau_bis_kelheim/ingolstadt-luitpoldstrasse-10046105/statistik?. Accessed 19 Feb 2016

  • LfU-GKD (Bayerisches Landesamt für Umwelt-Gewässerkundlicher Dienst Bayern) (2016) Gewässerkundlicher Dienst Bayern http://www.gkd.bayern.de/fluesse/abfluss/karten/index.php?thema=gkd&rubrik=fluesse&produkt=wasserstand&gknr=0. Accessed 19 Feb 2016

  • Lindenmayer D, Hobbs RJ, Montague-Drake R, Alexandra J, Bennett A, Burgman M, Cale P, Calhoun A, Cramer V, Cullen P, Driscoll D, Fahrig L, Fischer J, Franklin J, Haila Y, Hunter M, Gibbons P, Lake S, Luck G, MacGregor C, McIntyre S, Mac Nally R, Manning A, Miller J, Mooney H, Noss R, Possingham H, Saunders D, Schmiegelow F, Scott M, Simberloff D, Sisk T, Tabor G, Walker B, Wiens J, Woinarski J, Zavaleta E (2008) A checklist for ecological management of landscapes for conservation. Ecol Lett 11:78–91

    Google Scholar 

  • Londo G (1976) The decimal scale for relevés of permanent quadrats. Vegetatio 33(1):61–64

    Article  Google Scholar 

  • Lutosch I, Petry D, Scholz M (2002) Auen und Auenschutz in der EU-Wasserrahmenrichtlinie. Relevanz der EU-Wasserrahmenrichtlinie für den Naturschutz in Auen, UFZ-Bericht 22, Leipzig. http://m.ufz.eu/export/data/1/29258_ufzbericht22_02.pdf#page=9. Accessed 19 Feb 2016

  • Lytle DA, Poff NL (2004) Adaptation to natural flow regimes. Trends Ecol Evol 19:94–100

    Article  Google Scholar 

  • McManamay RA, Orth DJ, Kauffman J, Davis MM (2013) A database and meta-analysis of ecological responses to stream flow in the South Atlantic region. Southeast Nat 12(5):1–36

    Google Scholar 

  • Meyer EI (2008) Wiederbesiedlung sommertrockener Gewässer—Hinweise zu Mechanismen und Potenzialen der Strahlwirkung. Schr.-R. d. Deutschen Rates für Landespflege 81:106–112

    Google Scholar 

  • Mosner E, Schneider S, Lehmann B, Leyer I (2011) Hydrological prerequisites for optimum habitats of riparian Salix communities—identifying suitable reforestation sites. Appl Veg Sci 14(3):367–377

    Article  Google Scholar 

  • Mueller M, Pander J, Geist J (2011) The effects of weirs on structural stream habitat and biological communities. J Appl Ecol 48(6):1450–1461

    Article  Google Scholar 

  • Nilsson C, Reidy CA, Dynesius M, Revenga C (2005) Fragmentation and flow regulation of the world’s large river systems. Science 308:405–408

    Article  Google Scholar 

  • Poff NL, Zimmerman JK (2010) Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshw Biol 55(1):194–205

    Article  Google Scholar 

  • Renöfalt B, Jansson R, Nilsson C (2010) Effects of hydropower generation and opportunities for environmental flow management in Swedish riverine ecosystems. Freshw Biol 55(1):49–67

    Article  Google Scholar 

  • Richter BD, Warner AT, Meyer JL, Lutz K (2006) A collaborative and adaptive process for developing environmental flow recommendations. River Res Appl 22(3):297–318

    Article  Google Scholar 

  • Riecken U, Finck P, Raths U, Schröder E (2006) Rote Liste der gefährdeten Biotoptypen der Bundesrepublik Deutschland. Zweite fortgeschriebene Fassung 2006. Naturschutz und Biologische Vielfalt (No. 34). Bundesamt für Naturschutzb

  • Robinson CT, Tockner K, Ward JV (2002) The fauna of dynamic riverine landscapes. Freshw Biol 47:661–677

    Article  Google Scholar 

  • Rolls RJ, Leigh C, Sheldon F (2012) Mechanistic effects of low-flow hydrology on riverine ecosystems: ecological principles and consequences of alteration. Freshw Sci 31(4):1163–1186

    Article  Google Scholar 

  • Schiemer F, Baumgartner C, Tockner K (1999) Restoration of floodplain rivers: the’Danube restoration project’. Regul Rivers Res Manag 15(1):231–244

    Article  Google Scholar 

  • Schmedtje U. (1995) Ökologische Grundlagen für die Beurteilung von Ausleitungsstrecken: Beziehungen zwischen der sohlnahen Strömung, dem Gewässerbett und dem Makrozoobenthos in Fliessgewässern. Schriftenreihe des Bayerischen Landesamtes für Wasserwirtschaft (Heft 25), Bayerisches Landesamt für Wasserwirtschaft, München

  • Schneider-Binder E (2008) Importance of floodplains and floodplain wetlands along the Lower Danube with special regard to phytodiversity. Transylv Rev Syst Ecol Res 6:59–70

    Google Scholar 

  • Scholz M, Stab S, Dziock F, Henle K (ed) (2005) Lebensräume der Elbe und ihrer Auen. Konzepte für die nachhaltige Entwicklung einer Flusslandschaft, Band 4. Weißensee Verlag, Berlin

  • Schwab A, Kiehl K (2016) Wasser- und Ufervegetation in Cyffka B, Binder F, Ewald J, Geist J, Gruppe A, Hemmer I, Kiehl K, Mosandl R, Schopf R, Zahner V (ed.) Neue Dynamische Prozesse im Auenwald—Monitoring der Auenrenaturierung an der Donau zwischen Neuburg und Ingolstadt. Bonn (Bundesamt für Naturschutz)– Naturschutz und Biologische Vielfalt (accepted)

  • Stammel B, Cyffka B, Geist J, Müller M, Pander J, Blasch G, Fischer P, Gruppe A, Haas F, Kilg M, Lang P, Schopf R, Schwab A, Utschik H, Weißbrod M (2012) Floodplain restoration on the Upper Danube (Germany) by re-establishing water and sediment dynamics: a scientific monitoring as part of the implementation. River Syst 20(1–2):55–70

    Article  Google Scholar 

  • Statzner B, Müller R (1989) Standard hemispheres as indicators of flow characteristics in lotic benthos research. Freshw Biol 21(3):445–459

    Article  Google Scholar 

  • Stromberg JC, Beauchamp VB, Dixon MD, Lite SJ, Paradzick C (2007) Importance of low-flow and high-flow characteristics to restoration of riparian vegetation along rivers in arid south-western United States. Freshw Biol 52(4):651–679

    Article  Google Scholar 

  • Tockner K, Uehlinger U, Robinson CT (eds) (2009) Rivers of Europe. Academic Press, Amsterdam

    Google Scholar 

  • Toth LA (2010) Unrealized Expectations for Restoration of a Floodplain Plant Community. Restor Ecol 18:810–819

    Article  Google Scholar 

  • Urban KE (2005) Oscillating vegetation dynamics in a wet heathland. J Veg Sci 16(1):111–120

    Article  Google Scholar 

  • Utza E-C (2014) Determination of an ecologically sound minimum discharge for a tributary stream of the Danube floodplains between Ingolstadt and Neuburg, based on FST-hemisphere measurements. Master’s Thesis, Technische Universität München

  • Walters AW, Post DM (2011) How low can you go? Impacts of a low-flow disturbance on aquatic insect communities. Ecol Appl 21(1):163–174

    Article  Google Scholar 

  • Ward JV (1989) The four-dimensional nature of lotic ecosystems. J N Am Benthol Soc 8(1):2–8

    Article  Google Scholar 

  • Williams DD (2005) The biology of temporary waters. Oxford University Press, Oxford

    Book  Google Scholar 

Download references

Acknowledgments

We would like to thank André Schwab, Nicolas Eckert and Lucas Schönwetter for their field work. The research could not have been done without the restoration project of the Water Management Authority (WWA) Ingolstadt and the AG Auenrenaturierung or without the funding of the Federal Agency for Nature Conservation. At last, we would like to express our thanks to WWA Ingolstadt for the provision of data, to Michaela Walter-Rückel for helpful corrections and to Uwe Koenzen for useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Stammel.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “Water in Germany, guest” edited by Daniel Karthe, Peter Chifflard, Bernd Cyffka, Lucas Menzel, Heribert Nacken, Uta Raeder, Mario Sommerhäuser and Markus Weiler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stammel, B., Fischer, P., Gelhaus, M. et al. Restoration of ecosystem functions and efficiency control: case study of the Danube floodplain between Neuburg and Ingolstadt (Bavaria/Germany). Environ Earth Sci 75, 1174 (2016). https://doi.org/10.1007/s12665-016-5973-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5973-y

Keywords

Navigation