Abstract
The Danube floodplain is disconnected from its river, and natural water dynamic is inhibited by regulation and hydropower generation. Notwithstanding the hydropower dams, this restoration project aims to bring back natural water dynamics to the floodplain by a new floodplain stream, by ecological flooding and by temporary groundwater drawdown during summer months. Due to the new floodplain stream, former fluctuating water zones which are habitat for the target species Oenanthe aquatica changed to aquatic habitats which are also required. The measure groundwater drawdown aims to enhance the abiotic conditions for this pioneer species of muddy streambanks. The scientific efficiency control compares the situation before restoration implementation with the effects of three different types of groundwater drawdown. For these three types, the hydrological situation was investigated, and the effects on the potential area and on the occurrence of O. aquatica were mapped. The outcome is that one type can enhance germination of O. aquatica, but is detrimental for aquatic organisms. The other type is able to provide the same suitable conditions for O. aquatica, without severely harming the aquatic habitats. The third type cannot reach the needed low water levels and is therefore not a comparable option. The results show that an interdisciplinary monitoring is able to develop a measure suitable for both competing habitat types.
Similar content being viewed by others
References
Amoros C, Bornette G (2002) Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshw Biol 47(4):761–776
Arthington AH (2012) Environmental flows: saving rivers in the third millennium. Freshwater ecology series, vol 4. University of California Press, Berkeley
Brunotte E, Dister E, Günther-Diringer D, Koenzen U, Mehl D (2009) Flussauen in Deutschland–Erfassung und Bewertung des Auenzustandes. Naturschutz und Biologische Vielfalt 87
Buijse AD, Coops H, Staras M, Jans LH, van Geest GJ, Grift RE et al (2002) Restoration strategies for river floodplains along large lowland rivers in Europe. Freshw Biol 47:889–907
Cluer B, Thorne C (2014) A stream evolution model integrating habitat and ecosystem benefits. River Res Appl 30(2):135–154
Crawford RMM (1996) Whole plant adaptations to fluctuating water tables. Folia Geobot Phytotaxon 31:7–24
Fischer P. (2016): Fluviale Morphodynamik und eigendynamische Entwicklung. Untersuchungen an einem naturnahen Umgehungsbach im Auwald zwischen Neuburg und Ingolstadt. Dissertation Catholic University of Eichstaett-Ingolstadt
Gerristen AL, Haasnoot M, Hoffmann CC., Kotowski W, Leenen EJTM, Okruszko T, Penning WE, Piórkowski H, Platteeuw M, Querner EP, Siedlecki T, Swart EOAM (2006) How to use floodplains for flood risk reduction. Ecoflood Guidelines. Directorate-General for Research Sustainable Development, Global Change and Ecosystems. European Communities, Belgium
Gowing DJG, Spoor G (1998) The effect of water table depth on the distribution of plant species on lowland wet grassland. UK Floodplains 185:196
Henszey RJ, Pfeiffer K, Keough JR (2004) Linking surface-and ground-water levels to riparian grassland species along the Platte River in Central Nebraska, USA. Wetlands 24(3):665–687
Hughes FMR, Colston A, Mountford JO (2005) Restoring riparian ecosystems: the challenge of accommodating variability and designing restoration trajectories. Ecol Soc 10(1):12
Ilg C, Dziock F, Foeckler F, Follner K, Gerisch M, Glaeser J, Rink A, Schanowski A, Scholz M, Deichner O, Henle K (2008) Long-term reactions of plants and macorinvertebrates to extreme floods in floodplain grasslands. Ecology 89:2392–2398
Jensch D, Poschlod P (2008) Germination ecology of two closely related taxa in the genus Oenanthe: fine tuning for the habitat? Aquat Bot 89(4):345–351
Konrad CP, Olden JD, Lytle DA, Melis TS, Schmidt JC, Bray EN, Freeman MC, Gido KB, Hemphill NP, Kennard MJ, McMullen LE, Mims MC, Pyron M, Robinson CT, Williams JG (2011) Large-scale flow experiments for managing river systems. Bioscience 61(12):948–959
Lasne E, Lek S, Laffaille P (2007) Patterns in fish assemblages in the Loire floodplain: the role of hydrological connectivity and implications for conservation. Biol Conserv 139(3):258–268
Leyer I (2006) Dispersal, diversity and distribution patterns in pioneer vegetation: the role of river-floodplain connectivity. J Veg Sci 17(4):407–416
LfL (Bayerische Landesanstalt für Landwirtschaft) (2015) Agrarmeteorologie_Bayern. http://www.am.rlp.de/Internet/global/startpage.nsf/87f72373f4207cacc1256df2003dcfff/bea5dcab417673b7c12574c2002b2006?. Open document. Accessed 13 July 2015
LfU (Bayerisches Landesamt für Umwelt) (2016) Hochwasser-Nachrichtendienst Bayern. http://www.hnd.bayern.de/pegel/donau_bis_kelheim/ingolstadt-luitpoldstrasse-10046105/statistik?. Accessed 19 Feb 2016
LfU-GKD (Bayerisches Landesamt für Umwelt-Gewässerkundlicher Dienst Bayern) (2016) Gewässerkundlicher Dienst Bayern http://www.gkd.bayern.de/fluesse/abfluss/karten/index.php?thema=gkd&rubrik=fluesse&produkt=wasserstand&gknr=0. Accessed 19 Feb 2016
Lindenmayer D, Hobbs RJ, Montague-Drake R, Alexandra J, Bennett A, Burgman M, Cale P, Calhoun A, Cramer V, Cullen P, Driscoll D, Fahrig L, Fischer J, Franklin J, Haila Y, Hunter M, Gibbons P, Lake S, Luck G, MacGregor C, McIntyre S, Mac Nally R, Manning A, Miller J, Mooney H, Noss R, Possingham H, Saunders D, Schmiegelow F, Scott M, Simberloff D, Sisk T, Tabor G, Walker B, Wiens J, Woinarski J, Zavaleta E (2008) A checklist for ecological management of landscapes for conservation. Ecol Lett 11:78–91
Londo G (1976) The decimal scale for relevés of permanent quadrats. Vegetatio 33(1):61–64
Lutosch I, Petry D, Scholz M (2002) Auen und Auenschutz in der EU-Wasserrahmenrichtlinie. Relevanz der EU-Wasserrahmenrichtlinie für den Naturschutz in Auen, UFZ-Bericht 22, Leipzig. http://m.ufz.eu/export/data/1/29258_ufzbericht22_02.pdf#page=9. Accessed 19 Feb 2016
Lytle DA, Poff NL (2004) Adaptation to natural flow regimes. Trends Ecol Evol 19:94–100
McManamay RA, Orth DJ, Kauffman J, Davis MM (2013) A database and meta-analysis of ecological responses to stream flow in the South Atlantic region. Southeast Nat 12(5):1–36
Meyer EI (2008) Wiederbesiedlung sommertrockener Gewässer—Hinweise zu Mechanismen und Potenzialen der Strahlwirkung. Schr.-R. d. Deutschen Rates für Landespflege 81:106–112
Mosner E, Schneider S, Lehmann B, Leyer I (2011) Hydrological prerequisites for optimum habitats of riparian Salix communities—identifying suitable reforestation sites. Appl Veg Sci 14(3):367–377
Mueller M, Pander J, Geist J (2011) The effects of weirs on structural stream habitat and biological communities. J Appl Ecol 48(6):1450–1461
Nilsson C, Reidy CA, Dynesius M, Revenga C (2005) Fragmentation and flow regulation of the world’s large river systems. Science 308:405–408
Poff NL, Zimmerman JK (2010) Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshw Biol 55(1):194–205
Renöfalt B, Jansson R, Nilsson C (2010) Effects of hydropower generation and opportunities for environmental flow management in Swedish riverine ecosystems. Freshw Biol 55(1):49–67
Richter BD, Warner AT, Meyer JL, Lutz K (2006) A collaborative and adaptive process for developing environmental flow recommendations. River Res Appl 22(3):297–318
Riecken U, Finck P, Raths U, Schröder E (2006) Rote Liste der gefährdeten Biotoptypen der Bundesrepublik Deutschland. Zweite fortgeschriebene Fassung 2006. Naturschutz und Biologische Vielfalt (No. 34). Bundesamt für Naturschutzb
Robinson CT, Tockner K, Ward JV (2002) The fauna of dynamic riverine landscapes. Freshw Biol 47:661–677
Rolls RJ, Leigh C, Sheldon F (2012) Mechanistic effects of low-flow hydrology on riverine ecosystems: ecological principles and consequences of alteration. Freshw Sci 31(4):1163–1186
Schiemer F, Baumgartner C, Tockner K (1999) Restoration of floodplain rivers: the’Danube restoration project’. Regul Rivers Res Manag 15(1):231–244
Schmedtje U. (1995) Ökologische Grundlagen für die Beurteilung von Ausleitungsstrecken: Beziehungen zwischen der sohlnahen Strömung, dem Gewässerbett und dem Makrozoobenthos in Fliessgewässern. Schriftenreihe des Bayerischen Landesamtes für Wasserwirtschaft (Heft 25), Bayerisches Landesamt für Wasserwirtschaft, München
Schneider-Binder E (2008) Importance of floodplains and floodplain wetlands along the Lower Danube with special regard to phytodiversity. Transylv Rev Syst Ecol Res 6:59–70
Scholz M, Stab S, Dziock F, Henle K (ed) (2005) Lebensräume der Elbe und ihrer Auen. Konzepte für die nachhaltige Entwicklung einer Flusslandschaft, Band 4. Weißensee Verlag, Berlin
Schwab A, Kiehl K (2016) Wasser- und Ufervegetation in Cyffka B, Binder F, Ewald J, Geist J, Gruppe A, Hemmer I, Kiehl K, Mosandl R, Schopf R, Zahner V (ed.) Neue Dynamische Prozesse im Auenwald—Monitoring der Auenrenaturierung an der Donau zwischen Neuburg und Ingolstadt. Bonn (Bundesamt für Naturschutz)– Naturschutz und Biologische Vielfalt (accepted)
Stammel B, Cyffka B, Geist J, Müller M, Pander J, Blasch G, Fischer P, Gruppe A, Haas F, Kilg M, Lang P, Schopf R, Schwab A, Utschik H, Weißbrod M (2012) Floodplain restoration on the Upper Danube (Germany) by re-establishing water and sediment dynamics: a scientific monitoring as part of the implementation. River Syst 20(1–2):55–70
Statzner B, Müller R (1989) Standard hemispheres as indicators of flow characteristics in lotic benthos research. Freshw Biol 21(3):445–459
Stromberg JC, Beauchamp VB, Dixon MD, Lite SJ, Paradzick C (2007) Importance of low-flow and high-flow characteristics to restoration of riparian vegetation along rivers in arid south-western United States. Freshw Biol 52(4):651–679
Tockner K, Uehlinger U, Robinson CT (eds) (2009) Rivers of Europe. Academic Press, Amsterdam
Toth LA (2010) Unrealized Expectations for Restoration of a Floodplain Plant Community. Restor Ecol 18:810–819
Urban KE (2005) Oscillating vegetation dynamics in a wet heathland. J Veg Sci 16(1):111–120
Utza E-C (2014) Determination of an ecologically sound minimum discharge for a tributary stream of the Danube floodplains between Ingolstadt and Neuburg, based on FST-hemisphere measurements. Master’s Thesis, Technische Universität München
Walters AW, Post DM (2011) How low can you go? Impacts of a low-flow disturbance on aquatic insect communities. Ecol Appl 21(1):163–174
Ward JV (1989) The four-dimensional nature of lotic ecosystems. J N Am Benthol Soc 8(1):2–8
Williams DD (2005) The biology of temporary waters. Oxford University Press, Oxford
Acknowledgments
We would like to thank André Schwab, Nicolas Eckert and Lucas Schönwetter for their field work. The research could not have been done without the restoration project of the Water Management Authority (WWA) Ingolstadt and the AG Auenrenaturierung or without the funding of the Federal Agency for Nature Conservation. At last, we would like to express our thanks to WWA Ingolstadt for the provision of data, to Michaela Walter-Rückel for helpful corrections and to Uwe Koenzen for useful comments on the manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
This article is part of a Topical Collection in Environmental Earth Sciences on “Water in Germany, guest” edited by Daniel Karthe, Peter Chifflard, Bernd Cyffka, Lucas Menzel, Heribert Nacken, Uta Raeder, Mario Sommerhäuser and Markus Weiler.
Rights and permissions
About this article
Cite this article
Stammel, B., Fischer, P., Gelhaus, M. et al. Restoration of ecosystem functions and efficiency control: case study of the Danube floodplain between Neuburg and Ingolstadt (Bavaria/Germany). Environ Earth Sci 75, 1174 (2016). https://doi.org/10.1007/s12665-016-5973-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12665-016-5973-y