Skip to main content

Porous media hydrogen storage at a synthetic, heterogeneous field site: numerical simulation of storage operation and geophysical monitoring

Abstract

Large-scale energy storage such as porous media hydrogen storage will be required to mitigate shortages originating from fluctuating power production if renewables dominate the total supply. In order to assess the applicability of this storage option, a possible usage scenario is defined for an existing anticlinal structure in the North German Basin and the storage operation is numerically simulated. A heterogeneous and realistic parameter distribution is generated by a facies modelling approach. The storage operation, which is performed using five wells, consists of an initial filling of the storage with nitrogen used as cushion gas and hydrogen as well as several week-long withdrawal periods each followed by a refill and a shut-in period. Storage performance increases with the number of storage cycles and a total of 29 million m3 of hydrogen gas at surface conditions can be produced in the long term, equating to 186,000 GJ of energy when assuming a re-electrification efficiency of 60 %. In addition to downhole pressure monitoring geophysical techniques such as seismic full waveform inversion (FWI), electrical resistivity tomography (ERT) and gravity methods can be used for site monitoring, if their individual detecting capabilities are sufficient. Investigation of the storage scenario by virtual application of these methods shows that FWI and ERT can be used to map the thin gas phase distribution in this heterogeneous formation with the individual methods conforming each other. However, a high spatial density of receivers in a crosswell geometry with less than 500 m distance between the observation wells is required for this. Gravity mapping also shows anomalies indicating mass changes caused by the storage operation. However, monitoring the filling state of this hydrogen storage site is not possible.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. al Hagrey SA (2012) 2D optimized electrode arrays for borehole resistivity tomography and CO2 sequestration modelling. Pure Appl Geophys 169:1283–1292. doi:10.1007/s00024-011-0369-0

    Article  Google Scholar 

  2. al Hagrey SA, Strahser M, Rabbel W (2013) Seismic and geoelectric modelling studies of parameters controlling CO2 geostorage in saline reservoirs. Int J Greenh Gas Control 19:796–806. doi:10.1016/j.ijggc.2013.01

    Article  Google Scholar 

  3. al Hagrey SA, Köhn D, Rabbel W (2014) Geophysical assessment of renewable gas energy compressed in geologic pore storage reservoirs. SpringerPlus 3:1–16. doi:10.1186/2193-1801-3-267

    Article  Google Scholar 

  4. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME 146:54–62. doi:10.2118/942054-G

    Article  Google Scholar 

  5. Arts R, Eiken O, Chadwick A, Zweigel P, van der Meer L, Zinszner B (2002a) Monitoring of CO2 injected at Sleipner using time-lapse seismic data. 6th International Conference on Greenhouse Gas Control Technologies (GHGT-6), Kyoto, Japan

  6. Arts R, Elsayed R, van der Meer L, Eiken O, Ostmo S, Chadwick A, Kirby G, Zinszner B (2002b) Estimation of the mass of injected CO2 at Sleipner using time-lapse seismic data. EAGE 64th Conference & Exhibition, Florence, Italy, Expanded Abstracts

  7. Arts R, Chadwick A, Eiken O, Zweigel P (2003) Interpretation of the 1999 and 2001 time-lapse seismic data (wp 5.4). TNO report NITG 03-064-B, Netherlands Institute of Applied Geoscience TNO

  8. Asnaashari A, Brossier R, Garambois S, Audebert F, Thore P, Virieux J (2015) Time-lapse seismic imaging using regularized full-waveform inversion with a prior model: Which strategy? Geophys Prospect 63:78–98. doi:10.1111/1365-2478.12176

    Article  Google Scholar 

  9. Bachu S, Bennion B (2008) Effects of in situ conditions on relative permeability characteristics of CO2-brine systems. Environ Geol 54:1707–1722. doi:10.1007/s00254-007-0946-9

    Article  Google Scholar 

  10. Baldschuhn R, Binot F, Fleig S, Kockel F (2001) Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor. Geologisches Jahrbuch A153, Hannover

  11. Barthélémy H (2012) Hydrogen storage—industrial prospectives. Int J Hydrog Energy 37:17364–17372. doi:10.1016/j.ijhydene.2012.04.121

    Article  Google Scholar 

  12. Bary A, Crotogino F, Prevedel B, Berger H, Brown K, Frantz J, Sawyer W, Henzell M, Mohmeyer K-W, Ren N-K, Stiles K, Xiong H (2002) Storing natural gas underground. Oilfield Rev 14:2–17

    Google Scholar 

  13. Benisch K, Bauer S (2013) Short- and long-term regional pressure build-up during CO2 injection and its application for site monitoring. Int J Greenh Gas Control 19:220–233. doi:10.1016/j.ijggc.2013.09.002

    Article  Google Scholar 

  14. Benisch K, Köhn D, al Hagrey SA, Rabbel W, Bauer S (2014) A combined seismic and geoelectrical monitoring approach for CO2 storage using a synthetic field site. Environ Earth Sci 73:3077–3094. doi:10.1007/s12665-014-3603-0

    Article  Google Scholar 

  15. Bennion DB, Thomas FB, Ma T, Imer D (2000) Detailed protocol for the screening and selection of gas storage reservoirs, SPE 59738. SPE/CERI Gas Technology Symposium Calgary, Canada

    Google Scholar 

  16. Birkholzer JT, Zhou Q, Tsang CF (2009) Large-scale impact of CO2 storage in deep saline aquifers: a sensitivity study on pressure response in stratified systems. Int J Greenh Gas Control 3:181–194. doi:10.1016/j.ijggc.2008.08.002

    Article  Google Scholar 

  17. BMWi—Bundesministerium für Wirtschaft und Energie, ed (2015) Die Energie der Zukunft—Vierter Monitoring Bericht zur Energiewende. Berlin, Germany

  18. Brooks RH, Corey AT (1964) Hydraulic properties of porous media. Hydrology Papers Colorado State University, Fort Collins

    Google Scholar 

  19. Büchi FN, Hofer M, Peter C, Cabalzar UD, Bernard J, Hannesen U, Schmidt TJ, Closset A, Dietrich P (2014) Towards re-electrification of hydrogen obtained from the power-to-gas process by highly efficient H2/O2 polymer electrolyte fuel cells. RSC Adv 4:56139–56146. doi:10.1039/C4RA11868E

    Article  Google Scholar 

  20. Burton M, Kumar N, Bryant SL (2009) CO2 injectivity into brine aquifers: Why relative permeability matters as much as absolute permeability. Energy Procedia 1:3091–3098. doi:10.1016/j.egypro.2009.02.089

    Article  Google Scholar 

  21. Carden PO, Paterson L (1979) Physical, chemical and energy aspects of underground hydrogen storage. Int J Hydrog Energy 4:559–569. doi:10.1016/0360-3199(79)90083-1

    Article  Google Scholar 

  22. Carr S, Premier GC, Guwy AJ, Dinsdale RM, Maddy J (2014) Hydrogen storage and demand to increase wind power onto electrical distribution networks. Int J Hydrog Energy 39:10195–10207. doi:10.1016/j.ijhydene.2014.04.145

    Article  Google Scholar 

  23. Chadwick RA, Arts R, Eiken O (2005) 4D seismic quantification of a growing CO2 plume at Sleipner, North Sea. Petroleum Geol Conf Ser 4:1385–1399. doi:10.1144/0061385

    Google Scholar 

  24. Chadwick RA, Noy D, Arts R, Eiken O (2009) Latest time-lapse seismic data from Sleipner yield new insights into CO2 plume development. Energy Procedia 1:2103–2110. doi:10.1016/j.egypro.2009.01.274

    Article  Google Scholar 

  25. Crotogino F, Donadei S, Bünger U, Landinger H (2010) Large-scale hydrogen underground storage for securing future energy supplies. In: Stolten D, Grube T (eds) Proceedings of the 18th WHEC; 2010 May16-221, Schriften des Forschungszentrums Jülich 78-4

  26. Day-Lewis FD, Singha K, Binley AM (2005) Applying petrophysical models to radar travel time and electrical resistivity tomograms: resolution-dependent limitations. J Geophys Res. doi:10.1029/2004JB003569

    Google Scholar 

  27. Doornenbal JC, Stevenson AG (eds) (2010) Petroleum geological atlas of the southern permian basin area. EAGE Publications b. v, Houten

    Google Scholar 

  28. DSK—Deutsche Stratigraphische Kommission, ed (2005) Stratigraphie von Deutschland IV—Keuper. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart

  29. Eiken O, Brevik I, Arts R, Lindeberg E, Fagervik K (2000) Seismic monitoring of CO2 injected into a marine aquifer. SEG International Exposition and 70th Annual Meeting, Expanded Abstracts

  30. Evans DJ, West JM (2008) An appraisal of underground gas storage technologies and incidents, for the development of risk assessment methodology. RR605 Research Report, British Geological Survey, Nottingham

  31. Fahrion H, Betz D (1991) Geologischer Rahmen, Fund- und Fördergeschichte. In: Achilles H, Ahrendt H (eds) Das Gasfeld Thönse in Niedersachsen, ein Unikat. Schweizerbart Science Publishers, Stuttgart

    Google Scholar 

  32. Foh S, Novin M, Rockar E, Randolph P (1979) Underground hydrogen storage. Report BNL 57275. Institute of Gas Technology, Chicago

  33. Foley AM, Leahy PG, Marvuglia A, McKeogh EJ (2012) Current methods and advances in forecasting of wind power generation. Renew Energy 37:1–8. doi:10.1016/j.renene.2011.05.033

    Article  Google Scholar 

  34. Forsberg CW (2009) Sustainability by combining nuclear, fossil, and renewable energy sources. Prog Nucl Energy 51:192–200. doi:10.1016/j.pnucene.2008.04.002

    Article  Google Scholar 

  35. Gahleitner G (2013) Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications. Int J Hydrog Energy 38:2039–2061. doi:10.1016/j.ijhydene.2012.12.010

    Article  Google Scholar 

  36. Gasem KAM, Gao W, Pan Z, Robinson RL Jr (2001) A modified temperature dependence for the Peng-Robinson equation of state. Fluid Phase Equilib 181:113–125. doi:10.1016/S0378-3812(01)00488-5

    Article  Google Scholar 

  37. Gassmann F (1951) Über die Elastizität poröser Medien. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 96:1–23

    Google Scholar 

  38. Gaupp R (1991) Zur Fazies und Diagenese des Mittelrhät-Hauptsandsteins im Gasfeld Thönse. In: Achilles H, Ahrendt H (eds) Das Gasfeld Thönse in Niedersachsen, ein Unikat. Schweizerbart Science Publishers, Stuttgart

    Google Scholar 

  39. Ghaderi A, Landrø M (2009) Estimation of thickness and velocity changes of injected carbon dioxide layers from prestack time-lapse seismic data. Geophysics 74:O17–O28. doi:10.1190/1.3054659

    Article  Google Scholar 

  40. Götze H-J, Lahmeyer B (1988) Application of three-dimensional interactive modeling in gravity and magnetics. Geophysics 53:1096–1108

    Article  Google Scholar 

  41. Gregory DP, Pangborn JB (1976) Hydrogen energy. Annu Rev Energy 1:279–310. doi:10.1146/annurev.eg.01.110176.00143

    Article  Google Scholar 

  42. Haeseldonckx D, D’haeseleer W (2007) The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure. Int J Hydrog Energy 32:1381–1386. doi:10.1016/j.ijhydene.2006.10.018

    Article  Google Scholar 

  43. Hannis S (2010) Monitoring technologies used at some geological CO2 storage sites. Innovation for Sustainable Production (i-SUP) conference proceedings, Bruges, April 18–21 2010

  44. Helmig R (1997) Multiphase flow and transport processes in the subsurface. Springer, Berlin

    Book  Google Scholar 

  45. Hese F (2012) 3D Modellierung und Visualisierung von Untergrundstrukturen für die Nutzung des unterirdischen Raumes in Schleswig-Holstein. Dissertation, University of Kiel, Germany

  46. Hildenbrand A, Schlömer S, Krooss BM (2002) Gas breakthrough experiments of fine-grained sedimentary rocks. Geofluids 2:3–23. doi:10.1046/j.1468-8123.2002.00031.x

    Article  Google Scholar 

  47. Hildenbrand A, Schlömer S, Krooss BM, Littke R (2004) Gas breakthrough experiments on pelitic rocks: comparative study with N2, CO2 and CH4. Geofluids 4:61–81. doi:10.1111/j.1468-8123.2004.00073.x

    Article  Google Scholar 

  48. Katz DL, Cornell D, Vary JA, Kobayashi R, Elenbaas JR, Poettmann FH, Weinaug CF (1959) Handbook of natural gas engineering. McGraw-Hill, New York

    Google Scholar 

  49. Kaye GWC, Laby TH (2016) Tables of physical and chemical constants (16th edition). 3.5 Critical constants and second virial coefficients of gases, Kaye & Laby Online, v1.0, www.kayelaby.npl.co.uk. Accessed 28 Jan 2016

  50. Klaus T, Vollmer C, Werner K, Lehmann H, Müschen K (2010) Energieziel 2050: 100% Strom aus erneuerbaren Quellen. Federal Environment Agency, Germany

    Google Scholar 

  51. Korpås M, Greiner CJ (2008) Opportunities for hydrogen production in connection with wind power in weak grids. Renew Energy 33:119–1208. doi:10.1016/j.renene.2007.06.010

    Article  Google Scholar 

  52. Kroniger D, Madlener R (2014) Hydrogen storage for wind parks: a real options evaluation for an optimal investment in more flexibility. Appl Energy 136:931–946. doi:10.1016/j.apenergy.2014.04.041

    Article  Google Scholar 

  53. Lemmon EW, McLinden MO, Friend DG (2016) Thermophysical properties of fluid systems. In: NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard, National Institute of Standards and Technology http://webbook.nist.gov. Accessed 28 Jan 2016

  54. Loke MH, Acworth I, Dahlin T (2003) A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Explor Geophys 34:182–187. doi:10.1071/EG03182

    Article  Google Scholar 

  55. Lüth S, Bergmann P, Cosma C, Enescu N, Giese R, Götz J, Ivanova A, Juhlin C, Kashubin A, Yang C, Zhan F (2011) Time-lapse seismic surface and down-hole measurements for monitoring CO2 storage in CO2SINK project (Ketzin, Germany). Energy Procedia 4:3435–3442. doi:10.1016/j.egypro.2011.02.268

    Article  Google Scholar 

  56. Massoudi R, King AD Jr (1974) Effect of pressure on the surface tension of water. Adsorption of low molecular weight gases on water at 25°C. J Phys Chem 78:2262–2266

    Article  Google Scholar 

  57. Mavko G, Mukerji T (1998) Bounds on low frequency seismic velocities in partially saturated rocks. Geophysics 63:918–924

    Article  Google Scholar 

  58. McGillivray PR, Oldenburg DW (1990) Methods for calculating Fréchet derivatives and sensitivities for the nonlinear inverse problem: a comparative study. Geophys Prospect 38:499–524. doi:10.1111/j.1365-2478.1990.tb01859.x

    Article  Google Scholar 

  59. Meadows M (2008) Time-lapse seismic modelling and inversion of CO2 saturation for storage and enhanced oil recovery. Lead Edge 27:506–516. doi:10.1190/1.2907183

    Article  Google Scholar 

  60. MELUR—Ministerium für Energiewende, Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein (ed) (2013) Energiebilanz Schleswig-Holstein 2011. Kiel, Germany

  61. Ogden JM (1999) Prospects for building a hydrogen energy infrastructure. Annu Rev Energy Environ 24:227–279. doi:10.1146/annurev.energy.24.1.227

    Article  Google Scholar 

  62. Oldenburg C (2003) Carbon dioxide as cushion gas for natural gas storage. Energy Fuel 17:240–246. doi:10.1021/ef020162b

    Article  Google Scholar 

  63. Oldenburg C, Pan L (2013) Utilization of CO2 as cushion gas for porous media compressed air energy storage. Greenh Gases Sci Technol 3:124–135. doi:10.1002/ghg.1332

    Article  Google Scholar 

  64. Operto S, Miniussi A, Brossier R, Combe L, Métivier L, Monteiller V, Ribodetti A, Virieux J (2015) Efficient three-dimensional frequency-domain full-waveform inversion of ocean-bottom cable data: application to Valhall in the visco-acoustic vertical transverse isotropic approximation. Geophys J Int 202:1362–1391

    Article  Google Scholar 

  65. Paterson L (1983) The implications of fingering in underground hydrogen storage. Int J Hydrog Energy 8:53–59

    Article  Google Scholar 

  66. Pfeiffer WT, Bauer S (2015) Subsurface porous media hydrogen storage—scenario development and simulation. Energy Procedia 76:565–572. doi:10.1016/j.egypro.2015.07.872

    Article  Google Scholar 

  67. Queisser M, Singh SC (2012) Full waveform inversion in the time lapse mode applied to CO2 storage at Sleipner. Geophys Prospect 61:537–555. doi:10.1111/j.1365-2478.2012.01072.x

    Article  Google Scholar 

  68. Queisser M, Singh SC (2013) Localizing CO2 at Sleipner—seismic images versus P-wave velocities from waveform inversion. Geophysics 78:131–146. doi:10.1190/GEO2012-0216.1

    Article  Google Scholar 

  69. Röckel T, Lempp C (2003) Der Spannungszustand im Norddeutschen Becken. Erdöl Erdgas Kohle 119:73–79

    Google Scholar 

  70. Schlumberger NV (2014) ECLIPSE v2014.2—Technical Description

  71. Schmidt S, Plonka C, Götze H-J, Lahmeyer B (2011) Hybrid modelling of gravity, gravity gradients and magnetic fields. Geophys Prospect 59:1046–1051. doi:10.1111/j.1365-2478.2011.00999.x

    Article  Google Scholar 

  72. Schowalter T (1979) Mechanics of secondary hydrocarbon migration and entrapment. Am Assoc Petrol Geol Bull 63:723–760

    Google Scholar 

  73. Sedlacek R (1999) Untertage Erdgasspeicherung in Europa. Erdöl Erdgas Kohle 115:537–540

    Google Scholar 

  74. Sirgue L, Barkved OI, Dellinger J, Etgen J, Albertin U, Kommedal JH (2010) Full waveform inversion: the next leap forward in imaging at Valhall. First Break 28:65–70

    Article  Google Scholar 

  75. Sørensen B (1975) Energy and resources. Science 189:255–260. doi:10.1126/science.189.4199.255

    Article  Google Scholar 

  76. Sørensen B, Petersen AH, Juhl C, Ravn H, Søndergren C, Simonsen P, Jørgensen K, Nielsen LH, Larsen HV, Morthorst PE, Schleisner L, Sørensen F, Pedersen TE (2004) Hydrogen as an energy carrier: scenarios for future use of hydrogen in the Danish energy system. Int J Hydrog Energy 29:23–32. doi:10.1016/S0360-3199(03)00049-1

    Article  Google Scholar 

  77. Stummer P, Maurer H, Green AG (2004) Experimental design: electrical resistivity data sets that provide optimum subsurface information. Geophysics 69:120–139. doi:10.1190/1.1649381

    Article  Google Scholar 

  78. Wollenweber J, Alles S, Busch A, Krooss BM, Stanjek H, Littke R (2010) Experimental investigation of the CO2 sealing efficiency of caprocks. Int J Greenh Gas Control 4:231–241. doi:10.1016/j.ijggc.2010.01.003

    Article  Google Scholar 

  79. Zhang F, Juhlin C, Cosma C, Tryggvason A, Pratt RG (2012) Cross-well seismic waveform tomography for monitoring CO2 injection: a case study from the Ketzin Site, Germany. Geophys J Int 189:629–646. doi:10.1111/j.1365-246X.2012.05375.x

    Article  Google Scholar 

  80. Zhang F, Juhlin C, Ivandic M, Lüth S (2013) Application of seismic waveform tomography to monitoring of CO2 injection: modeling and a real data example from the Ketzin site, Germany. Geophys Prospect 61:284–299. doi:10.1111/1365-2478.12021

    Article  Google Scholar 

Download references

Acknowledgments

The presented work is part of the ANGUS + research project (www.angusplus.de). We gratefully acknowledge the funding of this project provided by the Federal Ministry of Education and Research (BMBF) under grant number 03EK3022 through the energy storage funding initiative “Energiespeicher” of the German Federal Government.

Author information

Affiliations

Authors

Corresponding author

Correspondence to W. T. Pfeiffer.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “Subsurface Energy Storage”, guest edited by Sebastian Bauer, Andreas Dahmke, and Olaf Kolditz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pfeiffer, W.T., al Hagrey, S.A., Köhn, D. et al. Porous media hydrogen storage at a synthetic, heterogeneous field site: numerical simulation of storage operation and geophysical monitoring. Environ Earth Sci 75, 1177 (2016). https://doi.org/10.1007/s12665-016-5958-x

Download citation

Keywords

  • Hydrogen
  • Energy storage
  • Geophysical monitoring
  • Numerical simulation