Skip to main content

Enhanced recovery of water due to ammonia nitrogen contamination caused by mining processes

Abstract

During in situ mining processes, high concentrations of ammonium sulfate solution are directly injected into the mountain to replace the rare earth. However, the residual ammonia nitrogen (AN) in the vadose zone from this injected solution is a serious pollutant of groundwater and soil. Unfortunately, in situ leaching methods using clean water are not effective at removing the AN. In this work, we developed a novel leaching method and examined its efficiency, as well as studied the mechanisms behind the adsorption and desorption of AN. It was found that the majority of the ammonium adsorbed in the soil was in soluble and exchangeable forms. The saturated adsorption capacity under mining conditions was 810 mg kg−1, where only 36 % of the adsorbed AN was able to be leached out by water. However, the amount of AN leached out increased to 85 % when a KCl solution was used as the leaching agent at an optimized concentration of 2.8 mM. Furthermore, this improved leaching agent worked well at a wide range of solution pHs. Therefore, this method is an efficient means by which to remediate AN contamination after mining processes of RE ores.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Boopathy R, Karthikeyan S, Mandal AB, Sekaran G (2013) Adsorption of ammonium ion by coconut shell-activated carbon from aqueous solution: kinetic, isotherm, and thermodynamic studies. Environ Sci Pollut Res Int 20:533–542. doi:10.1007/s11356-012-0911-3

    Article  Google Scholar 

  2. Buss S, Herbert A, Morgan P, Thornton S, Smith J (2004) A review of ammonium attenuation in soil and groundwater. Q J Eng Geol Hydrogeol 37:347–359

    Article  Google Scholar 

  3. Cavalli D, Consolati G, Marino P, Bechini L (2015) Measurement and simulation of soluble, exchangeable, and non-exchangeable ammonium in three soils. Geoderma 259–260:116–125. doi:10.1016/j.geoderma.2015.05.011

    Article  Google Scholar 

  4. Chen J, Xiao HJ, Qi T, Chen DL, Long HM, Liu SH (2015) Rare earths exposure and male infertility: the injury mechanism study of rare earths on male mice and human sperm. Environ Sci Pollut Res Int 22:2076–2086. doi:10.1007/s11356-014-3499-y

    Article  Google Scholar 

  5. Conte P, Agretto A, Spaccini R, Piccolo A (2005) Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils. Environ Pollut 135:515–522. doi:10.1016/j.envpol.2004.10.006

    Article  Google Scholar 

  6. Hale SE, Alling V, Martinsen V, Mulder J, Breedveld GD, Cornelissen G (2013) The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere 91:1612–1619. doi:10.1016/j.chemosphere.2012.12.057

    Article  Google Scholar 

  7. He Y, Li WZ (2013) Experimental and theoretical investigations on diffusion process for rare earth ores. Mater Test 55:407–410

    Article  Google Scholar 

  8. James DW, Harward ME (1964) Competition of NH3 and H2O for adsorption sites on clay minerals. Soil Sci Soc Am J 28:636–640. doi:10.2136/sssaj1964.03615995002800050018x

    Article  Google Scholar 

  9. Jun T, Jingqun Y, Ruan C, Guohua R, Mintao J, Kexian O (2010) Kinetics on leaching rare earth from the weathered crust elution-deposited rare earth ores with ammonium sulfate solution. Hydrometallurgy 101:166–170. doi:10.1016/j.hydromet.2010.01.001

    Article  Google Scholar 

  10. Kong X, Bi E, Liu F, Huang G, Ma J (2015) Laboratory column study for evaluating a multimedia permeable reactive barrier for the remediation of ammonium contaminated groundwater. Environ Technol 36:1433–1440

    Article  Google Scholar 

  11. Kowalenko CG, Yu S (1996) Solution, exchangeable and clay-fixed ammonium in south coast British Columbia soils. Can J Soil Sci 76:473–483. doi:10.4141/cjss96-059

    Article  Google Scholar 

  12. Li X, Chen Z, Zhang Y (2013) A human health risk assessment of rare earth elements in soil and vegetables from a mining area in Fujian province. Southeast China Chemosphere 93:1240–1246. doi:10.1016/j.chemosphere.2013.06.085

    Article  Google Scholar 

  13. Liao Y, Yang YQ, Shen DS, Long YY (2013) Effect of deposit age on adsorption and desorption behaviors of ammonia nitrogen on municipal solid waste. Environ Sci Pollut Res Int 20:1546–1555. doi:10.1007/s11356-012-1067-x

    Article  Google Scholar 

  14. Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthès V, Krimissa M (2007) Sorption isotherms: a review on physical bases, modeling and measurement. Appl Geochem 22:249–275. doi:10.1016/j.apgeochem.2006.09.010

    Article  Google Scholar 

  15. Liu C-C, Chen G-B (2013) Reclamation of cadmium-contaminated soil using dissolved organic matter solution originating from wine-processing waste sludge. J Hazard Mater 244–245:645–653. doi:10.1016/j.jhazmat.2012.10.060

    Article  Google Scholar 

  16. Liu Y-L, Zhang B, Li C-L, Hu F, Velde B (2008) Long-term fertilization influences on clay mineral composition and ammonium adsorption in a rice paddy soil. Soil Sci Soc Am J 72:1580–1590

    Article  Google Scholar 

  17. Liu T, Yuan J, Dong W, Wu H, Wang H (2015) Effects on inorganic nitrogen compounds release of contaminated sediment treatment with in situ calcium nitrate injection. Environ Sci Pollut Res Int 22:1250–1260. doi:10.1007/s11356-014-3421-7

    Article  Google Scholar 

  18. Ma Y, Liu C (1999) Trace element geochemistry during chemical weathering ChinSciBull 44:2260–2263. doi:10.1007/bf02885934

    Google Scholar 

  19. Mall ID, Srivastava VC, Kumar GVA, Mishra IM (2006) Characterization and utilization of mesoporous fertilizer plant waste carbon for adsorptive removal of dyes from aqueous solution. Colloid Surf A 278:175–187. doi:10.1016/j.colsurfa.2005.12.017

    Article  Google Scholar 

  20. Moldoveanu GA, Papangelakis VG (2013) Recovery of rare earth elements adsorbed on clay minerals: II Leaching with ammonium sulfate. Hydrometallurgy 131–132:158–166. doi:10.1016/j.hydromet.2012.10.011

    Article  Google Scholar 

  21. Nieder R, Benbi DK, Scherer HW (2011) Fixation and defixation of ammonium in soils: a review. Biol Fertil Soils 47:1–14. doi:10.1007/s00374-010-0506-4

    Article  Google Scholar 

  22. Riaz M, Mian IA, Cresser MS (2010) Litter effects on ammonium dynamics in an acid soil under grassland. Geoderma 159:198–208. doi:10.1016/j.geoderma.2010.07.012

    Article  Google Scholar 

  23. Rider D, Zasoski R, Claassen V (2005) Ammonium fixation in sub-grade decomposed granite substrates. Plant Soil 277:73–84

    Article  Google Scholar 

  24. Shen S, Tu S-I, Kemper WD (1997) Equilibrium and kinetic study of ammonium adsorption and fixation in sodium-treated vermiculite. Soil Sci Soc Am J 61:1611–1618. doi:10.2136/sssaj1997.03615995006100060011x

    Article  Google Scholar 

  25. Silva JA, Bremner JM (1966) Determination and isotope-ratio analysis of different forms of nitrogen in soils: 5. Fixed ammonium. Soil Sci Soc Am J 30:587–594. doi:10.2136/sssaj1966.03615995003000050017x

    Article  Google Scholar 

  26. Steffens D, Sparks DL (1997) Kinetics of nonexchangeable ammonium release from soils. Soil Sci Soc Am J 61:455–462. doi:10.2136/sssaj1997.03615995006100020012x

    Article  Google Scholar 

  27. Tian J, Tang X, Yin J, Luo X, Rao G, Jiang M (2013a) Process optimization on leaching of a lean weathered crust elution-deposited rare earth ores. Int J Miner Process 119:83–88. doi:10.1016/j.minpro.2013.01.004

    Article  Google Scholar 

  28. Tian J, Yin J, Tang X, Chen J, Luo X, Rao G (2013b) Enhanced leaching process of a low-grade weathered crust elution-deposited rare earth ore with carboxymethyl sesbania gum. Hydrometallurgy 139:124–131. doi:10.1016/j.hydromet.2013.08.001

    Article  Google Scholar 

  29. Wang B, Lehmann J, Hanley K, Hestrin R, Enders A (2015a) Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH. Chemosphere 138:120–126. doi:10.1016/j.chemosphere.2015.05.062

    Article  Google Scholar 

  30. Wang X, Lei Y, Ge J, Wu S (2015b) Production forecast of China’s rare earths based on the generalized Weng model and policy recommendations. Resour Policy 43:11–18. doi:10.1016/j.resourpol.2014.11.002

    Article  Google Scholar 

  31. Witek-Krowiak A, Harikishore Kumar Reddy D (2013) Removal of microelemental Cr(III) and Cu(II) by using soybean meal waste–unusual isotherms and insights of binding mechanism. Bioresour Technol 127:350–357. doi:10.1016/j.biortech.2012.09.072

    Article  Google Scholar 

  32. Xiao Y, Feng Z, Huang X, Huang L, Chen Y, Wang L, Long Z (2015a) Recovery of rare earths from weathered crust elution-deposited rare earth ore without ammonia-nitrogen pollution: I. Leaching with magnesium sulfate. Hydrometallurgy 153:58–65. doi:10.1016/j.hydromet.2015.02.011

    Article  Google Scholar 

  33. Xiao Y, Liu X, Feng Z, Huang X, Huang L, Chen Y, Wu W (2015b) Role of minerals properties on leaching process of weathered crust elution-deposited rare earth ore. J Rare Earth 33:545–552. doi:10.1016/S1002-0721(14)60454-3

    Article  Google Scholar 

  34. Yang X, Zhang J (2015) Recovery of rare earth from ion-adsorption rare earth ores with a compound lixiviant. Sep Purif Technol 142:203–208. doi:10.1016/j.seppur.2014.11.050

    Article  Google Scholar 

  35. Yunnen C, Xiaoyan L, Changshi X, Liming L (2015) The mechanism of ion exchange and adsorption coexist on medium-low concentration ammonium-nitrogen removal by ion-exchange resin. Environ Technol 36:2349–2356. doi:10.1080/21622515.2015.1027285

    Article  Google Scholar 

  36. Zheng Y, Liu Y, Wang A (2011) Fast removal of ammonium ion using a hydrogel optimized with response surface methodology. Chem Eng J 171:1201–1208. doi:10.1016/j.cej.2011.05.026

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the Fundamental Research Fund for the Central Universities (No. 2652014069) and Research Fund of China Geological Survey (D216036). We would also like to thank Prof. Zhongyu Ren and Mr. Shengpin Li for their kind help during the study.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Qiang Xue or Honghan Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 256 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Xue, Q. & Chen, H. Enhanced recovery of water due to ammonia nitrogen contamination caused by mining processes. Environ Earth Sci 75, 1102 (2016). https://doi.org/10.1007/s12665-016-5908-7

Download citation

Keywords

  • Ion-absorbed rare earth
  • Groundwater pollution
  • Ammonia nitrogen of high concentration
  • Adsorption and desorption
  • In situ recovery