Skip to main content

Advertisement

Log in

A 4D GIS methodology to study variations in evaporation points on a heritage building

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Building decay is a dynamic process in which time is a key factor, and moisture-induced decay is no exception to the rule. Mapping strategies may hinder time-based moisture damage assessment and control in historic buildings, however. The time factor has often been absent in the mapping methodologies deployed to date, either because the studies conducted were one-off exercises or no georeferencing was involved. This paper describes the generation of four-dimensional space from a three-dimensional geographic information system (GIS) and time series data and its use to assess the incidence of moisture, defined in terms of evaporation points, on a historic building. Taken together with the potential inherent in the application of map algebra to GIS, this approach constitutes a powerful tool for enhancing the interpretation of dynamic processes such as moisture flows and evaporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Almagro A (2011) Veintidós años de experiencia de fotogrametría arquitectónica en la Escuela de Estudios Árabes, CSIC. In: Domingo M, Sanchez AJ (eds) Documentación gráfica del Patrimonio. Ministerio de Cultura, Madrid, pp 26–45

  • Benavente D, Cultrone G, Gomez-Heras M (2008) The combined influence of mineralogical, hygric and thermal properties on the durability of porous building stones. Eur J Mineral 20:673–685

    Article  Google Scholar 

  • Bertolla L, Porsani JL, Soldovieri F, Catapano I (2014) GPR-4D monitoring a controlled LNAPL spill in a masonry tank at USP, Brazil. J Appl Geophys 103:237–244

    Article  Google Scholar 

  • Camuffo D (2014) Microclimate for cultural heritage. Elsevier, Amsterdam

    Google Scholar 

  • Charter, of Cracow (2000) Charter of Cracow 2000: principles for conservation and restoration of built heritage. Archaeol Polona 38:251–256

    Google Scholar 

  • Columbu S, Verdiani G (2014) Digital survey and material analysis strategies for documenting, monitoring and study the romanesque Churches in Sardinia, Italy. Lecture notes in computer science, vol 8740, pp 446–453

  • D’agostino D (2013) Moisture dynamics in an historical masonry structure: The Cathedral of Lecce (South Italy). Build Environ 63:122–133

    Article  Google Scholar 

  • Doulamis A, Ioannides M, Doulamis N, Hadjiprocopis A, Fritsch D, Balet O, Julien M, Protopapadakis E, Makantasis K, Weinlinger G, Johnsons PS, Klein M, Fellner D, Stork A, Santos P (2013) 4D Reconstruction of the past. In: Hadjimitsis DG, Themistocleous K, Michaelides S, Papadavid G (eds) Proceedings of SPIE Volume: 8795 First International Conference on Remote Sensing and Geoinformation of the Environment. Article Number: UNSP 87950 J

  • Franzini M, Leoni L, Lezzerini M, Cardelli R (2007) Relationships between mineralogical composition, water absorption and hydric dilatation in the “Macigno” sandstones from Lunigiana (Massa, Tuscany). Eur J Mineral 19:113–123

    Article  Google Scholar 

  • García Morales S, López-González L, Collado Gómez A (2012) Metodología de inspección higrotérmica para la determinación de un factor intensidad de evaporación en edificios históricos. Informes de la Constr 64:69–78

    Article  Google Scholar 

  • Gomez-Heras M, Smith BJ, Fort R (2008) Influence of surface heterogeneities of building granite on its thermal response and its potential for the generation of thermoclasty. Environ Geol 56:547–560

    Article  Google Scholar 

  • Gomez-Heras M, López-González L, García-Morales S, Fort R, Álvarez de Buergo M (2014) Integrating non-destructive techniques with photogrammetry 3D models for the development of geographic information systems in heritage structures. In: Rogerio-Candelera MA (ed) Science, technology and cultural heritage. Taylor & Francis Group, London, pp 429–434

    Google Scholar 

  • Hutton T (1996) Monitoring Britain´s heritage. Constr Repair 10(1):41–42, 44

    Google Scholar 

  • Jorda F, Navarro S, Pérez A, Cahero R, López D, Lerma JL (2011) Close range photogrammetry and terrestrial laser scanning: high resolution texturized 3D model of the Chapel of the Kings in the Palencia cathedral as a case study. ISPRS. CIPA Symposium

  • López González L (2016) Aplicación de herramientas GIS para la cartografía y correlación de datos de ensayos no destructivos en el diagnóstico de edificios históricos. Unpublished PhD Thesis. Universidad Politécnica de Madrid. Escuela Técnica Superior de Arquitectura

  • Martinez-Garrido MI, Gomez-Heras M, Fort R, Varas-Muriel MJ (2014) Monitoring moisture distribution on stone and masonry walls. In: Rogerio-Candelera MA (ed) Science, technology and cultural heritage. CRC Press, Boca Raton, pp 35–40

    Google Scholar 

  • Martínez-Garrido MI, Aparicio S, Fort R, Anaya JJ, Izquierdo MAG (2014) Effect of solar radiation and humidity on the inner core of walls in historic buildings. Constr Build Mater 51:383–394

    Article  Google Scholar 

  • Mezzino D (2014) The digitalization of Cultural Heritage’s tangible & intangible dimensions. In: Piscitelli M (ed) Best practices in heritage conservation and management: from the world to pompeii, Le vie dei Mercanti XII Forum Internazionale di Studi. La scuola di Pitagora editrice, Napoli, pp 115–122

  • Morales Dos Ramos R (2014) Informe técnico de la Ermita del Humilladero. Servicio Territorial de Cultura de Avila. Unpublished report

  • Nireki T (1980) Examination of durability test methods for building materials based on performance evaluation. In: Sereda PJ, Litvan GG (eds) Durability of building materials and components. ASTM STP 691, American Society for Testing and Materials, Philladelphia, pp 31–37

  • Raimondi V, Lognoli D, Palombi L (2014) A fluorescence lidar combining spectral, lifetime and imaging capabilities for the remote sensing of cultural heritage assets. In: Michel U, Schulz K, Ehlers M, Nikolakopoulos KG, Civco DL (eds) Earth Resources and Environmental Remote Sensing/GIS Applications V. Proceedings of SPIE 9245. Article Number: 92450 K

  • Sandrolini F, Franzoni E (2006) An operative protocol for reliable measurements of moisture in porous materials of ancient buildings. Build Environ 41:1372–1380

    Article  Google Scholar 

  • Smith BJ, Gómez-Heras M, McCabe S (2008) Understanding the decay of stone-built cultural heritage. Prog Phys Geogr 32(4):439–461

  • Steiger M, Siegesmund S (2007) Special issue on salt decay. Environ Geol 52:185–186

    Article  Google Scholar 

  • Van Ruymbeke M, Tigny V, De Badts E, Garcia-Moreno R, Billen R. (2008). Development and use of a 4D GIS to support the conservation of the Calakmul site. In: Lasaponara, R Masini, N (Eds) Proceedings of the 1st International EARSeL Workshop, Aracne, pp 333–338

Download references

Acknowledgments

This research was funded by the Regional Government of Madrid and the European Social Fund under the project Geomateriales 2 S2013/MIT-2914, as well as by the Territorial Culture Service of the province of Avila, Department of Culture and Tourism, Regional Government of Castile and Leon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Gomez-Heras.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “Geomaterials used as construction raw materials and their environmental interactions” guest edited by Richard Prikryl, Ákos Török, Magdalini Theodoridou, and Miguel Gomez-Heras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez-Gonzalez, L., Otero de Cosca, R., Gomez-Heras, M. et al. A 4D GIS methodology to study variations in evaporation points on a heritage building. Environ Earth Sci 75, 1113 (2016). https://doi.org/10.1007/s12665-016-5907-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5907-8

Keywords