Skip to main content

Advertisement

Log in

Combining geophysical techniques and multi-criteria GIS-based application modeling approach for groundwater potential assessment in southwestern Nigeria

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

A new approach of modeling very low frequency–electromagnetic (VLF–EM) and vertical electrical sounding (VES) data with a view of evaluating groundwater resources potential via application of GIS-based multi-criteria technique is investigated in this study. On eight VLF–EM traverses established in the site, 40 VES locations were combed. The acquired geophysical data (VLF–EM and VES) were processed applying Fraser/Karous–Hjelt filter and Win-Resist program geophysical software to determine the area subsurface geophysical parameters. Five hydrogeologic maps were produced based on the results of the interpreted geophysical parameters. The produced hydrogeologic maps were assigned suitable weights and different rankings to the individual classes boundary within the maps using the standard Saaty’s scale principle in the context of analytical hierarchy process (AHP) data mining technique. A raster-based empirical GIS model was developed for integrating the hydrogeologic maps to compute the groundwater potential index (GWPI) values in the range of 1.02–2.82 for the study area. Based on the estimated GWPI results, a final map zoning the area into low (0.0930–1.3922), medium (1.3922–1.9109) and high (1.9109–2.8173) groundwater potential classes was produced in GIS environment. The prediction accuracy of the produced potential map was established via cross-validation and in situ well correlation analysis. The results of the study established a new approach of modeling geophysical data for exploring groundwater productivity potential in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adabanija MA, Omidiora EO, Olayinka AI (2010) Fuzzy logic modeling of the resistivity parameter and topography features for aquifer assessment in hydrogeological investigation of a crystalline basement complex. Hydrogeol J 2008 16:461–481. doi:10.1007/s10040-007-0221-x

    Google Scholar 

  • Adelusi AO, Ayuk MA, Kayode JS (2014) VLF–EM and VES: an application to groundwater exploration in a Precambrian basement terrain SW Nigeria. Ann Geophys 57(1):1–11. doi:10.4401/ag-6291

    Google Scholar 

  • Adiat KAN, Nawawi MNM, Abdullah K (2012) Assessing the accuracy of GIS-based elementary multi criteria decision analysis as a spatial prediction tool—a case of predicting potential zones of sustainable groundwater resources. J Hydrol 440:75–89. doi:10.1016/j.jhydrol.2012.03.028

    Article  Google Scholar 

  • Adiat KAN, Nawawi MN, Abdullah M (2013) Application of multi-criteria decision analysis to geoelectric and geologic parameters for spatial prediction of groundwater resources potential and aquifer evaluation. Pure Appl Geophys 170:453–471

    Article  Google Scholar 

  • Aizebeokhai PA, Oyeyemi KD (2014) Application of geoelectrical resistivity imaging and VLF–EM for subsurface characterization in a sedimentary terrain, Southwestern Nigeria. Arab J Geosci. doi:10.1007/s12517-014-1482-z

    Google Scholar 

  • Al Saud M (2010) Mapping potential areas for groundwater storage in Wadi Aurnah Basin, western Arabian Peninsula, using remote sensing and geographic information system techniques. Hydrogeol J 18:1481–1495. doi:10.1007/s10040-010-0598-9

    Article  Google Scholar 

  • Ariff H, Salit MS, Ismail N, Nukman Y (2008) Use of Analytical Hierarchy Process (AHP) for selecting the best design concept. J Teknol 49(A):1–18

    Google Scholar 

  • Awasthi A, Chautan SS (2011) Using AHP and Dempste—Shafer theory for evaluating sustainable transport solution. Environ Model Softw 26:781–796

    Article  Google Scholar 

  • Bala AN, Ike EC (2001) The aquifer of the crystalline basement rocks in Gusau area, North-western Nigeria. J Min Geol 37(2):177–184

    Google Scholar 

  • Benson AK, Payne KL, Stubben MA (1997) Mapping groundwater contamination using DC resistivity and VLF geophysical methods—a case study. Geophysics 62:80–86

    Article  Google Scholar 

  • Bernard J, Valla P (1991) Groundwater exploration in fissured media with electrical and VLF methods. Geoexploration 27:81–91

    Article  Google Scholar 

  • Chandra S, Ch R, Rao VA, Singh VS, Jain SC (2004) Estimation of natural recharge and its dependency on sub-surface geoelectric parameters. J Hydrol. doi:10.1016/j.jhydrol.2004.04.001

    Google Scholar 

  • Chowdhury A, Jha MK, Chowdary VM, Mal BC (2009) Integrated remote sensing and GIS-based approach for assessing ground-water potential in West Medinipur district, West Bengal, India. Int J Remote Sens 30(1):231–250

    Article  Google Scholar 

  • Chowdhury A, Jha MK, Chowdary VM (2010) Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district, West Bengal, using RS, GIS and MCDM techniques. Environ Earth Sci 59:1209–1222

    Article  Google Scholar 

  • Dan-Hassan MA, Olorunfemi MO (1999) Hydro-geophysical investigation of a basement terrain in the north central part of Kaduna State Nigeria. J Min Geol 35(2):189–206

    Google Scholar 

  • Dar IA, Sankar K, Dar MA (2011) Deciphering groundwater potential zones in hard rock terrain using geospatial technology. Environ Monit Assess 173(1–4):597–610

    Article  Google Scholar 

  • De Lima OAL, Niwas S (2000) Estimation of hydraulic parameters of shaly sandstone aquifers from geological measurements. J Hydrol 235:12–26

    Article  Google Scholar 

  • Dhakate R, Singh VS (2005) Estimation of hydraulic parameters from surface geophysical methods, Kaliapani Ultramafic Complex, Orissa, India. J Environ Hydrol 13(12):1–11

    Google Scholar 

  • Edet AE, Okereke CS (1996) Assessment of hydrogeological conditions in basement aquifers of the Precambrian Oban Massif, Southwestern Nigeria. J Appl Geophys 36:195–204

    Article  Google Scholar 

  • Elewa HH, Fathy RG, Qaddah AA (2010) The contribution of geographic information systems and remote sensing in determining priority areas for hydrogeological development, Darb el-Arbain area, Western Desert, Egypt. Hydrogeol J 18:1157–1171. doi:10.1007/s10040-010-0590-4

    Article  Google Scholar 

  • Fraser DC (1969) Contouring of VLF–EM data. Geophysics 34:958–967

    Article  Google Scholar 

  • Jaiswal RK, Mukherjee S, Krishnamurthy J, Saxena R (2003) Role of remote sensing and GIS techniques for generation groundwater prospectzones towards rural development—an approach. Int J Remote Sens 24(5):993–1008

    Article  Google Scholar 

  • Janssen R (1992) Multiobjective decision support for environmental management. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Jayeoba A, Oladunjoye MA (2013) Hydro-geophysical evaluation of groundwater potential in hard rock terrain of southwestern Nigeria. RMZ M&G 60:271–285

    Google Scholar 

  • Jha MK, Peiffer S (2006) Applications of remote sensing and GIS technologies in groundwater hydrology: past, present and future, vol 201. BayCEER, Bayreuth, pp 15–29

    Google Scholar 

  • Jha MK, Chowdhury A, Chowdary VM, Peiffer S (2007) Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints. Water Resour Manag 21(2):427–467

    Article  Google Scholar 

  • Jha MK, Chowdary VM, Al Chowdhury (2010) Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeol J 18:1713–1728. doi:10.1007/s10040-010-0631-z

    Article  Google Scholar 

  • Johnston K, Hoef JMV, Krivoruchko K, Lucas N (2003) Using ArcGIS geostatistical analyst, environmental systems research institute, Redlands, USA, 2001, p 300

  • Karous M, Hjelt SE (1983) Linear filtering of VLF dip-angle measurements. Geophys Prospect 31:782–894

    Article  Google Scholar 

  • Katie S, Yohay C, Jean C, Chris W (2009) Uses and misuses of multicriteria decision analysis (MCDA) in environmental decision making. Risk Anal 29:1

    Article  Google Scholar 

  • Kelly W (1977) Geoelectric sounding for estimating aquifer hydraulic conductivity. Groundwater 15(6):420–425

    Article  Google Scholar 

  • Khalil MH (2006) Geoelectric resistivity sounding for delineating salt water intrusion in the Abu Zanima area, west Sinai, Egypt. J Geophys Eng 3:243–251

    Article  Google Scholar 

  • Kosinki WK, Kelly WE (1981) Geoelectric soundings for predicting aquifer properties. Groundwater 19:163–171

    Article  Google Scholar 

  • Kumar R, Yadav GS (2014) Geohydrological investigation using Schlumberger sounding in part of hard rock and alluvial area of Ahraura region, Mirzapur district, Uttar Pradesh, India. Arab J Geosci 8:3645–3654

    Article  Google Scholar 

  • Lahdelma R, Salminen P, Hokkanen J (2000) Using multicriteria methods in environmental planning and management. Environ Manag 26(6):595–605

    Article  Google Scholar 

  • Lee S, Kim YS, Oh HJ (2011) Application of a weights-of-evidence method and GIS to regional groundwater productivity potential mapping. J Environ Manag 96(1):91–105

    Article  Google Scholar 

  • Linkov I, Satterstrom K, Kiker G, Batchelor C, Bridges T (2006) From comparative risk assessment to multi-criteria decision analysis and adaptive management: recent developments and applications. Environ Int 32:1072–1093

    Article  Google Scholar 

  • Louis I, Karantonis G, Voulgaris N, Louis F (2004) Geophysical methods in the determination of aquifer parameters: the case of Mornos river delta, Greece. Res J Chem Environ 18(4):41–49

    Google Scholar 

  • Machiwal D, Rangi N, Sharma A (2014) Integrated knowledge- and data-driven approaches for groundwater potential zoning using GIS and multi-criteria decision making techniques on hard-rock terrain of Ahar catchment, Rajasthan, India. Environ Earth Sci. doi:10.1007/s12665-014-3544-7

    Google Scholar 

  • Madrucci V, Taioli F, Araujo CC (2008) Groundwater favorability map using GIS multicriteria data analysis on crystalline terrain, Sao Paulo State, Brazil. J Hydrol 357:153–173

    Article  Google Scholar 

  • Maillet R (1974) The fundamental equations of electrical prospecting. Geophysics 12:529–556

    Article  Google Scholar 

  • Manap MA, Sulaiman WNA, Ramli MF, Pradhan B, Surip N (2011) A knowledge-driven GIS modelling technique for groundwater potential mapping at the Upper Langat Basin, Malaysia. Arab J Geosci 6(5):1621–1637. doi:10.1007/s12517-011-0469-2

    Article  Google Scholar 

  • Manap MA, Nampak H, Pradhan B, Lee S, Sulaiman WNA, Ramli MF (2014) Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS. Arab J Geosci 7:711–724. doi:10.1007/s12517-012-0795-z

    Article  Google Scholar 

  • McNeill JD (1988) Electromagnetics. In: Proceedings on the application of geophysics to engineering and environmental problems, pp 251–348

  • Mogaji KA, Olayanju GM, Oladapo MI (2011a) Geophysical evaluation of rock type impact on aquifer characterization in the basement complex areas of Ondo State, Southwestern Nigeria: geo-electric assessment and geographic information systems (GIS) approach. Int J Water Resour Environ Eng 3(4):77–86

    Google Scholar 

  • Mogaji KA, Omosuyi GO, Olayanju GM (2011b) Groundwater system evaluation and protective capacity of overburden material at Ileoluji Southwestern Nigeria. J Geol Min Res 3(11):294–304

    Google Scholar 

  • Mogaji KA, Lim HS, Abdullah K (2013) Modeling groundwater vulnerability prediction using geographic information system (GIS)-based ordered weighted average (OWA) method and DRASTIC model theory hybrid approach. Arab J Geosci. doi:10.1007/s12517-013-1391-1

    Google Scholar 

  • Mogaji KA, Lim HS, Abdullah K (2014) Regional prediction of groundwater potential mapping in a multifaceted geology terrain using GIS-based Dempster-Shafer model. Arab J Geosci. doi:10.1007/s12517-014-1391-1

    Google Scholar 

  • Mogaji KA, Lim HS, Abdullah K (2015) Modeling of groundwater recharge using a multiple linear regression (MLR) recharge model developed from geophysical parameters: a case of groundwater resources management. Environ Earth Sci. doi:10.1007/s12665-014-3476-2

    Google Scholar 

  • Mohamed SEJ, Shaharin I, Wan NA, Puziah AL (2013) Groundwater resources assessment using integrated geophysical techniques in the southwestern region of Peninsular Malaysia. Arab J Geosci 6(11):4129–4144

    Article  Google Scholar 

  • Mufid Al-Hadithi DC, Israil M, Kumar B (2006) Groundwater-recharge estimation using a surface electrical resistivity method in the Himalayan foothill region, India. Hydrogeol J 14:44–50

    Article  Google Scholar 

  • Muthukrishnan A, Manjunatha V (2008) Role of remote sensing and GIS in artificial recharge of the groundwater aquifer in the Shanmuganadi sub water shed in the Cauvery River Basin, Tiruchirappalli District, Tamil Nadu. GIS Ideas, 4–6 December 2008

  • Nabighian MN, Macae JC (1991) Time domain electromagnetic prospecting methods. In: Nabighian MN (ed) Electromagnetic methods in applied geophysics, 2: applications, Part B. Society of Exploration Geophysicists, Tulsa, pp 427–520

    Chapter  Google Scholar 

  • Ndatuwong LG, Yadav GS (2014) Application of geo-electrical data to evaluate groundwater potential zone and assessment of overburden protective capacity in part of Sonebhadra district, Uttar Pradesh. Environ Earth Sci. doi:10.1007/s12665-014-3649-z

    Google Scholar 

  • Nigeria Geological Survey Agency (2006) Published by the Authority of the Federal Republic of Nigeria

  • Niwas S, de Lima OAL (2003) Aquifer parameter estimation from surface resistivity data. Groundwater 41(1):94–99

    Article  Google Scholar 

  • Niwas S, Singhal DC (1985) Aquifer transmissivity of porous media from resistivity data. J Hydrol 82:143–153

    Article  Google Scholar 

  • Obi-Reddy GP, Chandra-Mouli K, Srivastava SK, Mali AK (2000) Evaluation of groundwater potential zones using remote sensing data—a case study of Gaimukh watershed, Bhandara district Maharastra. J Indian Soc Remote Sens 28(1):19–32

    Article  Google Scholar 

  • Ofomola MO, Adiat KAN, Olayanju GM, Ako BD (2009) Integrated geophysical methods for post foundation studies, Obanla Staff Quarters of the University of Technology, Akure, Nigeria. Pac J Sci Technol 10(2):93–111

    Google Scholar 

  • Ogilvy RD, Lee AC (1991) Interpretation of VLF–EM inphase data using current density pseudosections. Geophys Prospect 39:567–580

    Article  Google Scholar 

  • Park I, Kim Y, Lee S (2014) Groundwater productivity potential mapping using evidential belief function. Groundwater 52:201–207. doi:10.1111/gwat.12197

    Article  Google Scholar 

  • Pirttijarvi M (2004) KHF filtering program: a geophysical software for Karous–Hjelt and Fraser filtering on geophysical VLF data. Geophysical Division, Department of Geosciences, University of Oulu, Finland

    Google Scholar 

  • Pradhan B (2009) Ground water potential zonation for basaltic watersheds using satellite remote sensing data and GIS techniques. Cent Eur J Geosci 1(1):120–129. doi:10.2478/v10085-009-0008-5

    Google Scholar 

  • Pradhan B, Youssef AM (2010) Manifestation of remote sensing data and GIS for landslide hazard analysis using spatial—based statistical models. Arab J Geosci 3(3):319–326

    Article  Google Scholar 

  • Pradhan B, Singh RP, Buchroithner MF (2006) Estimation and stress and its use in evaluation of landslide prone regions using remote sensing data. Adv Space Res 37:698–709

    Article  Google Scholar 

  • Prasad RK, Mondal NC, Banerjec P, Nandakumar MV, Singh VS (2008) Deciphering potential of groundwater zones in hardrock through application of GIS. Environ Geol 55:467–475

    Article  Google Scholar 

  • Pratap K, Ravindran KV, Prabakaran B (2000) Groundwater prospect zoning using remote sensing and geographical information system: a case study in Dala–Renukoot area, Sonbhadra district, Uttar Pradesh. J Indian Soc Remote Sens 28:249–263

    Article  Google Scholar 

  • Rahaman MA (1988) Recent advances in the study of the Basement complex of Nigeria. In: Oluyide PO et al (eds) Precambrian Geology of Nigeria. Geological survey of Nigeria, pp 11–43

  • Regan HM, Davis FW, Andelman SJ, Widyanata A, Freese M (2007) Comprehensive criteria for biodiversity evaluation in conservation planning. Biodivers Conserv 16:2715–2728

    Article  Google Scholar 

  • Reynolds JM (1987) An introduction to applied and environmental geophysics. Wiley, England, p 796

    Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process: planning, priority setting, resource allocation. McGraw-Hill, New York

    Google Scholar 

  • Saaty TL, Vargas GL (1991) Prediction, projection and forecasting. Kluwer, Dordrecht

    Book  Google Scholar 

  • Satpathy BN, Kanungo BN (1976) Groundwater exploration in hard rock, a case study. Geophys Prospect 24(4):725–736

    Article  Google Scholar 

  • Sener E, Davra A, Ozcelik M (2005) An integration of GIS and remote sensing in groundwater investigation: a case study in Bunduc, Turkey. Hydrogeol J 13(5):826–839

    Article  Google Scholar 

  • Sharma SP, Baranwal VC (2005) Delineation of groundwater bearing fracture zones in a hardrock area integrating very low frequency electromagnetic and resistivity data. J Appl Geophys 57:155–166

    Article  Google Scholar 

  • Sinha AK (1990) Interpretation of ground VLF–EM data in terms of vertical conductor models. Geoexploration 26:213–231

    Article  Google Scholar 

  • Solomon S, Quiel F (2006) Groundwater study using remote sensing and geographic information system (GIS) in the central highlands of Eritrea. Hydrogeol J 14(5):729–741

    Article  Google Scholar 

  • Soupios PM, Kouli M, Vallianatos F, Vafidis A, Stavroulakis G (2007) Estimation of aquifer hydraulic parameters from surficial geophysical methods: a case study of Keritis Basin in Chania (Crete–Greece). J Hydrol 338:122–131. doi:10.1016/j.jhydrol.2007.02.02

    Article  Google Scholar 

  • Srinivasa RY, Jugran DK (2003) Delineation of groundwater potential zones and zones of groundwater quality for domestic purposes using remote sensing and GIS. Hydrol Sci 48(5):821–833

    Article  Google Scholar 

  • Sundararajan NG, Nandakumar MN, Srinivas Y (2007) VES and VLF—an application to groundwater exploration, Khammam, India. Lead Edge 26(6):708–716

    Article  Google Scholar 

  • Thirumalaivasan D, Karmegam M, Venugopal K (2003) AHP-DRASTIC: software for specific aquifer vulnerability assessment using DRASTIC model and GIS. Environ Model Softw 18:645–656

    Article  Google Scholar 

  • Tijani MN, Osinowo OO, Ogedengbe O (2009) Mapping subsurface fracture systems using integrated electrical resistivity profiling and VLF–EM methods: a case study of suspected gold mineralization. RMZ Mater Geoenviron 56(4):415–436

    Google Scholar 

  • Ungemach P, Moslaghini F, Duprat A (1969) Emphasis in determination of transmissivity coefficient and application in nappe alluvial aquifer Rhine. Bult Instt Assoc Sci Hydrol 14(3):169–190

    Article  Google Scholar 

  • Vijith HM (2007) Application of GIS and frequency ratio model in mapping the potential surface failure sites in the Poonjar subwatershed of Meenachil river in Western Ghats of Kerala. J Indian Soc Remote Sens 35(3):261–271

    Article  Google Scholar 

  • Worthington PR (1977) Geophysical investigations of groundwater resources in the Kalahari Basin. Geophysics 42(4):838–849

    Article  Google Scholar 

  • Yatsalo B, Kiker GA, Kim J, Bridges TS, Seager TP, Gardner K (2007) Application of multicriteria decision analysis tools to two contaminated sediment case studies. Integr Environ Assess Manag 3(2):223–233

    Article  Google Scholar 

  • Zekster IS, Everett LG (eds) (2004) Groundwater resources of the world and their use, IHP-VI, Series on Groundwater. UNESCO (United Nations Educational, Scientific and Cultural Organisation), Paris

    Google Scholar 

  • Zhou L, Chen Y (2014) Exploring the potential of community-based grassland management in Yanchi County of Ningxia Hui Autonomous Region, China: an application of the SWOT-AHP method. Environ Earth Sci 72:1811–1820. doi:10.1007/s12665-014-3090-3

    Article  Google Scholar 

  • Zohdy AAR, Eaton GP, Mabey DR (1974) Application of surface geophysics to groundwater investigations, techniques water resources investigations of the US Geological Survey. Washington, pp 195–205

Download references

Acknowledgments

The author would like to thank Olajuyigbe, Ahmed and the Technical staff of Applied Geophysics Department, FUTA, Nigeria for assisting in Data acquisition for this research work. The author also expressed his profound appreciation to the editor and reviewers for their valuable suggestions to improve the paper to its best.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kehinde Anthony Mogaji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mogaji, K.A. Combining geophysical techniques and multi-criteria GIS-based application modeling approach for groundwater potential assessment in southwestern Nigeria. Environ Earth Sci 75, 1181 (2016). https://doi.org/10.1007/s12665-016-5897-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5897-6

Keywords

Navigation