Skip to main content

Hydrological modelling of changes in the water balance due to the impact of woody biomass production in the North German Plain

An Erratum to this article was published on 02 August 2016

Abstract

Several studies have implied that cultivation of willow and poplar short-rotation coppices influence the area’s water balance. Due to the high density of sites suitable for SRCs in the Northern German Plain, this study focusses on four different model areas representative of the climatic, soil, and morphological heterogeneity of this landscape. The river basins selected for the study are the Ems, Treene, Aland, and Uecker–Randow–Welse basins. The water balance modelling was performed with the Soil Water Assessment Tool (SWAT) and automatically calibrated with SWAT-CUP. The implemented scenarios were set to 10 % SRC cover on suitable sites, based on the area’s predicted need to meet domestic demands for woody biomass by 2020. Additionally, an extreme scenario of 100 % cultivation on all suitable sites was implemented to determine the maximum effect of SRC on the regional water balance as well as to allow for a direct comparison with annual crops, pasture, and deciduous forest. For parametrization, field measurements were used to characterize the key physiological parameters for willow and poplar in SWAT. The results for the 10 % SRC scenarios did not show a substantial impact on the investigated water balance components at the water basin level. But at the local level, the effects of conversion to SRC are more pronounced. In general, actual evapotranspiration of SRC is 16 % higher compared to annual crops and average groundwater recharge decreases by 48 %. Also, available water capacity in the soil increases by 26 % for SRCs in comparison with annual crops.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abbaspour K (2015) SWAT‐CUP: SWAT calibration and uncertainty programs—a user manual. EAWAG: Swiss Federal Institute of Aquatic and Technology. http://swat.tamu.edu/media/114860/usermanual_swatcup.pdf. Accessed 26 Apr 2016

  2. Abbaspour KC, van Genuchten M, Th Schulin R, Schläppi E (1997) A sequential uncertainty domain inverse procedure for estimating subsurface flow and transport parameters. Water Resour Res 33(8):1879–1892. doi:10.1029/97WR01230

    Article  Google Scholar 

  3. Abbaspour KC, Sonnleitner M, Schulin R (1999) Uncertainty in estimation of soil hydraulic parameters by inverse modeling: example lysimeter experiments. Soil Sci Soc Am J 63(3):501–509. doi:10.2136/sssaj1999.03615995006300030012x

    Article  Google Scholar 

  4. Abbaspour KC, Yang J, Maximov I, Siber R, Bogner K, Mieleitner J, Zobrist J, Srinivasan R (2007) Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J Hydrol 333(2–4):413–430. doi:10.1016/j.jhydrol.2006.09.014

    Article  Google Scholar 

  5. Abbaspour KD, Rouholahnejad E, Si Vaghef, Srinivasan R, Yang H, Kløve B (2015) A continental-scale hydrology and water quality model for Europe: calibration and uncertainty of a high-resolution large-scale SWAT model. J Hydrol 524:733–752. doi:10.1016/j.jhydrol.2015.03.027

    Article  Google Scholar 

  6. Allen G, Pereira S, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements—FAO irrigation and drainage paper 56. Rome: FAO. http://www.fao.org/docrep/x0490e/x0490e00.htm. Accessed 20 Oct 2015

  7. Arnold J, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment part I: model development. J Am Water Resour Assoc 34(1):73–89. doi:10.1111/j.1752-1688.1998.tb05961.x

    Article  Google Scholar 

  8. Arnold JG, Moriasi DN, Gassman PW, Abbaspour PW, White PW, Srinivasan R, Santhi C, van Harmel RD, Van Griensven A, Van Liew MW, Kannan N, Jha MK (2012) SWAT: model use, calibration, and validation. Trans ASABE 55(4):1491–1508

    Article  Google Scholar 

  9. Aust C (2012) Abschätzung der Nationalen und regionalen Biomassepotentiale von Kurzumtriebsplantagen auf landwirtschaftlichen Flächen in Deutschland. Dissertation. Albrecht-Ludwigs-Universität, Freiburg im Breisgau

  10. Bund für Umwelt und Naturschutz Deutschland (BUND) (2010) Kurzumtriebsplantagen für die Energieholzgewinnung – Chancen und Risiken. Bund für Umwelt und Naturschutz Deutschland. Retrieved from http://www.bund.net/fileadmin/bundnet/publikationen/landwirtschaft/20100714_landwirtschaft_bund_position_55_KUP.pdf. Accessed 26 Nov 2015

  11. Bungart R, Hüttl RF (2004) Growth dynamics and biomass accumulation of 8-year-old hybrid poplar clones in a short-rotation plantation on a clayey-sandy mining substrate with respect to plant nutrition and water budget. Eur J For Res 123:105–115. doi:10.1007/s10342-004-0024-8

    Google Scholar 

  12. Dimitriou I, Busch G, Jacobs S, Schmidt-Walter P, Lamersdorf N (2009) A review of the impacts of short rotation coppice cultivation on water issues. Agric For Res 59(3):162–197

    Google Scholar 

  13. Ettala MO (1988) Evapotranspiration from Salix aquatic plantation at a sanitary landfill. Aqua Fenn 18:3–14

    Google Scholar 

  14. Fachargentur für Nachwachsende Rohstoffe (2014) Anteil erneuerbarer Energien am Endenergieverbrauch. http://mediathek.fnr.de/anteil-erneuerbarer-energien-am-endenergieverbrauch.html. Accessed 30 Jan 2015

  15. Fu YH, Piao S, Vitasse Y, Zhao H, De Boeck HJ, Liu Q, Yang H, Weber U, Hänninen H, Janssens IA (2015) Increased heat requirement for leaf flushing in temperate woody species over 1980–2012: effects of chilling, precipitation and insolation. Glob Change Biol 21:2687–2697

    Article  Google Scholar 

  16. Gassman P, Reyes M, Green C, Arnold JG (2007) The soil and water assessment tool: historical development, applications, and future research directions. ASABE 50(4):1211–1250. doi:10.13031/2013.23637

    Article  Google Scholar 

  17. Gupta HV, Sorooshian S, Yapo PO (1999) Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. J Hydrol Eng 4(2):135–143. doi:10.1061/(ASCE)1084-0699(1999)4:2(135)

    Article  Google Scholar 

  18. Guse B, Reusser DE, Fohrer N (2014) How to improve the representation of hydrological processes in SWAT for a lowland catchment—temporal analysis of parameter sensitivity and model performance. Hydrol Process 28:2651–2670. doi:10.1002/hyp.9777

    Article  Google Scholar 

  19. Hall RL, Allen SJ (1997) Water use of poplar clones grown as short-rotation coppice at two sites in the United Kingdom. Asp Appl Biol 49:163–172

    Google Scholar 

  20. Hartwich J, Bölscher J, Schulte A (2014) The impact of short rotation coppice on land and water resources. Water Int 39(6):813–841. doi:10.1080/02508060.2014.959870

    Article  Google Scholar 

  21. Hartwich J, Bölscher J, Schulte A, Schmidt M, Pflugmacher C, Murach D (2015a) Das Transpirationswasserdargebot als steuernder Faktor für die Produktion von Energie aus Weiden in Kurzumtriebsplantagen – Abschätzung des Bioenergiepotentials für Deutschland. Hydrol Wasserbewirtsch 59(5):217–226. doi:10.5675/HyWa_2015,5_2

    Google Scholar 

  22. Hartwich J, Reinhardt-Imjela C, Bölscher J, Schulte A (2015b) The impact of woody biomass production on the water balance of the North German Lowlands—model setup and calibration. In: Proceedings of conference on international soil and water assessment tool, Pula, Sardinia, Italy, pp 1–13

  23. Henriksen HJ, Troldborg L, Nyegaard P, Sonnenborg TO, Refsgaard JC, Madsen B (2003) Methodology for construction, calibration and validation of a national hydrological model for Denmark. J Hydrol 280(1–4):52–71. doi:10.1016/S0022-1694(03)00186-0

    Article  Google Scholar 

  24. Internationales Institut für Wald und Holz NRW (2014) Entwicklung eines Nachhaltigkeitszertifikats für den Agrarholzanbau, AZ 29927-01/-02. Schlussbericht. Band 1. DBU, Münster

  25. Lamersdorf N, Petzold R, Schwärzel K, Feger KH, Köstner B, Moderow U, Bernhofer C, Kunst C (2010) Bodenökologische Aspekte von Kurzumtriebsplantagen. In: Bemmann A, Knust C (eds) Agrowood. Kurzumtriebsplantagen in Deutschland und europäische Perspektiven. Weißensee Verlag, Berlin, pp 170–188

    Google Scholar 

  26. Linderson M-J, Iritz Z, Lindroth A (2007) The effect of water availability on stand-level productivity, transpiration, water use efficiency and radiation use efficiency of field-grown willow clones. Biomass Bioenergy 31(7):460–468. doi:10.1016/j.biombioe.2007.01.014

    Article  Google Scholar 

  27. Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Am Soc Agric Biol Eng 50(3):885–900

    Google Scholar 

  28. Murach D, Hartmann H, Murn Y, Schultze M, Wael A, Röhle H (2009) Standortsbasierte Leistungsschätzung in Agrarholzbeständen in Brandenburg und Sachsen. In: Reeg T, Bemmann A, Kondold W, Murach D, Spiecker H (eds) Anbau und Nutzung von Bäumen auf Landwirtschaftlichen Flächen. Wiley, Weinheim, pp 29–40

    Chapter  Google Scholar 

  29. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models. Part I: discussion of principles. J Hydrol 10:282–290. doi:10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  30. Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2011) Soil and Water Assessment Tool theoretical documentation version 2009. Texas Water Resources Institute technical report no. 406. http://twri.tamu.edu/reports/2011/tr406.pdf. Accessed 26 Nov 2015

  31. Neumann J, Wycisk P (2003) Mittlere jährliche Grundwasserneubildung. In: Liedtke H, Mäusbacher R, Schmidt KH (eds) Bundesrepublik Deutschland Nationalatlas – Relief, Boden und Wasser. Spektrum Akademischer Verlag, Heidelberg, pp 144–145

    Google Scholar 

  32. Nisbet T (2005) Water use by trees. Forestry commission information note 65. Forestry Commission, Edinburgh

  33. Nisbet T, Thomas H, Shah N (2011) Short rotation forestry and water. In: McKay H (ed) Short rotation forestry: review of growth and environmental impacts. Forest research monograph, vol 2. Forest Research, Surrey, pp 13–34

    Google Scholar 

  34. Petzold R, Feger KH, Schwärzel K (2009) Wasserhaushalt von Kurzumtriebsplantagen. In: Reeg T, Bemmann A, Konold W, Murach D, Spiecker H (eds) Anbau und Nutzung von Bäumen auf landwirtschaftlichen Flächen. Wiley-VCH Verlag, Weinheim, pp 181–192

    Chapter  Google Scholar 

  35. Pfannerstill M, Guse B, Fohrer N (2014) A multi-storage groundwater concept for the SWAT model to emphasize nonlinear groundwater dynamics in lowland catchments. Hydrol Process 28:5599–5612. doi:10.1002/hyp.10062

    Article  Google Scholar 

  36. Rouholahnejad E, Abbaspour KC, Vejdani M, Srinivasan R, Schulin R, Lehmann A (2012) A parallelization framework for calibration of hydrological models. Environ Model Softw 31:28–36. doi:10.1016/j.envsoft.2011.12.001

    Article  Google Scholar 

  37. Schmalz B, Tavares F, Fohrer N (2008) Modelling hydrological processes in mesoscale lowland river basins with SWAT—capabilities and challenges. Hydrol Sci J 53(5):989–1000. doi:10.1623/hysj.53.5.989

    Article  Google Scholar 

  38. Schmidt M, Murach D (2015) Wassernutzungseffizienz von Gehölzen im Kurzumtrieb auf Ackerstandorten in Brandenburg. In: Kage H, Sieling H, Francke-Weltmann L (eds) Multifuntionale Agrarlandschaften – Pflanzenbaulicher Anspruch, Biodiversität, Ökosystemdienstleistungen. Verlag Liddy Halm, Göttingen, pp 41–42

    Google Scholar 

  39. Servat E, Dezetter A (1991) Selection of calibration objective functions in the context of rainfall-runoff modelling in a Sudanese savannah area. Hydrol Sci J 36(4):307–330. doi:10.1080/02626669109492517

    Article  Google Scholar 

  40. Singh J, Knapp HV, Demissie M (2004) Hydrologic modeling of the Iroquois River watershed using HSPF and SWAT. Illinois State Water Survey Contract Report 2004–08. http://swat.tamu.edu/media/90101/singh.pdf. Accessed 26 Nov 2015

  41. Singh J, Knapp HV, Arnold JG, Demissie M (2005) Hydrologic modeling of the Iroquois River watershed using HSPF and SWAT. J Am Water Resour Assoc 41(2):361–375. doi:10.1111/j.1752-1688.2005.tb03740.x

    Article  Google Scholar 

  42. Srinivasan R, Ramanarayanan TS, Arnold JG, Bednarz ST (1998) Large area hydrologic modeling and assessment part II: model application. J Am Water Resour Assoc 34:91–101. doi:10.1111/j.1752-1688.1998.tb05962.x

    Article  Google Scholar 

  43. Stisen S, Sonnenborg TO, Hojberg AL, Troldborg L, Refsgaard JC (2011) Evaluation of climate input biases and water balance issues using a coupled surface–subsurface model. Vadose Zone J 10(1):37–53. doi:10.2136/vzj2010.0001

    Article  Google Scholar 

  44. Stork M, Schulte A, Murach D (2014) Large-scale fuelwood production on agricultural fields in mesoscale river catchments–GIS-based determination of potentials in the Dahme river catchment (Brandenburg, NE Germany). Biomass Bioenergy 64:42–49. doi:10.1016/j.biombioe.2014.03.029

    Article  Google Scholar 

  45. Strauch M, Bernhofer C, Koide S, Lorz C, Volk M, Makeschin F (2012) Using precipitation data ensemble for uncertainty analysis in SWAT streamflow simulation. J Hydrol 414–415:413–424. doi:10.1016/j.jhydrol.2011.11.014

    Article  Google Scholar 

  46. Tallis MJ, Casella E, Henshall PA, Aylott MJ, Randle TJ, Morison JIL, Taylor G (2013) Development and evaluation of ForestGrowth-SRC a process-based model for short rotation coppice yield and spatial supply reveals poplar uses water more efficiently than willow. Glob Change Biol Bioenergy 5:53–66. doi:10.1111/j.1757-1707.2012.01191.x

    Article  Google Scholar 

  47. Umweltbundesamt (2013) Strom- und Wärmeversorgung einer Siedlung bei unterschiedlichen Energieeffizienz-Standards. Umweltbundesamt, Dessau-Roßlau

  48. Van Liew M, Veith T, Bosch D, Arnold J (2007) Suitability of SWAT for the conservation effects assessment project: comparison on USDA agricultural research service watersheds. J Hydrol Eng 12(2):173–189. doi:10.1061/(ASCE)1084-0699(2007)12:2(173)

    Article  Google Scholar 

  49. Vitasse Y, Basler D (2013) What role for photoperiod in the bud burst phenology of European beech. Eur J For Res 132:1–8

    Article  Google Scholar 

  50. Wahren A, Schwärzel K, Feger K-H (2012) Potentials and limitations of natural flood retention by forested land in headwater catchments: evidence from experimental and model studies. J Flood Risk Manag 5(4):321–335. doi:10.1111/j.1753-318X.2012.01152.x

    Article  Google Scholar 

  51. Wahren A, Julich S, Feger KH (2014) Modellgestützte Untersuchung zum Einfluss von Energieholz-Anbau auf ein mesoskaliges Einzugsgebiet (Hoyerswerdaer Schwarzwasser, Sachsen). In: Cyffka B (ed) Wasser – Landschaft – Mensch in Vergangenheit, Gegenwart und Zukunft. Beiträge zum Tag der Hydrologie am 20./21. März 2014 an der Katholischen Universität Eichstät-Ingolstadt. Forum für Hydrologie und Wasserbewirtschaftung Heft, vol 34, no 14, pp 245–252

  52. Wahren A, Richter F, Julich S, Jansen M, Feger KH (2015) The influence of more widespread cultivation of short rotation coppice on the water balance—from the site to regional scale. In: Manning DB, Bemmann A, Bredemeier M, Lamersdorf N, Ammer C (eds) Bioenergy from Dendromass for the sustainable development of rural areas. Wiley-VCH Verlag, Weinheim, pp 45–61. doi:10.1002/9783527682973.ch5

    Chapter  Google Scholar 

  53. Webb J, Cook P, Skiba U, Levy P, Sajwaj T, Parker C, Mouat A (2009) Investigation of the economics and potential environmental impacts of the production of short rotation coppicing on poorer quality land. Report to the Scottish Government. AEA, Didcot

Download references

Acknowledgments

This work was supported by the Federal Ministry of Food and Agriculture, Germany through the Fachagentur Nachwachsende Rohstoffe e. V. (FNR) (Grant Numbers 2012410 and 22014812). In addition, our thanks go to the Federal Agency for Cartography and Geodesy, Institute for Geosciences and Natural Resources; State Office for Mining, Geology and Minerals Brandenburg; Lower Saxony State Office for Water Management, Coastal and Nature Conservation; State Office for Environment, Health and Consumer Protection Brandenburg; State Office for the Environment, Nature Conservation and Geology Mecklenburg-Vorpommern; State Agency for Nature, Environment and Consumer Protection North Rhine-Westphalia; State Agency for Coastal Defense, National Park and Marine Reserve Schleswig–Holstein; the German Weather Service; the High Performance Computing at the Freie Universität Berlin for providing data, provision of calculation time and service; and the Eberswalde Forestry State Center of Excellence—Landeskompetenzzentrum Forst Eberswalde—of the Brandenburg State Forestry Agency for the loan of an instrument.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jens Hartwich.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “Water in Germany”, guest edited by Daniel Karthe, Peter Chifflard, Bernd Cyffka, Lucas Menzel, Heribert Nacken, Uta Raeder, Mario Sommerhäuser and Markus Weiler.

An erratum to this article is available at http://dx.doi.org/10.1007/s12665-016-5912-y.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hartwich, J., Schmidt, M., Bölscher, J. et al. Hydrological modelling of changes in the water balance due to the impact of woody biomass production in the North German Plain. Environ Earth Sci 75, 1071 (2016). https://doi.org/10.1007/s12665-016-5870-4

Download citation

Keywords

  • Hydrological modelling
  • SWAT model
  • Water balance
  • Woody biomass
  • North German Plain
  • Short-rotation coppice