Skip to main content

Advertisement

Log in

Using 222Rn and carbon isotopes (12C, 13C and 14C) to determine CO2 sources in forest soils developed on contrasting geology in Slovenia

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Global carbon estimates have identified abiotic CO2 as a potentially significant source of atmospheric CO2, albeit little is known about its origin. The aim of this study was to identify the origin of soil CO2 using carbon isotopes and 222Rn data. The study involved collecting data from seven Slovenian forest soils developed over bedrock with contrasting geology where different origin of soil CO2 was expected; two sampling sites were located on soils formed above carbonate bedrock, one above metamorphic bedrock and the remainder above clastic sedimentary rocks. Analysis of soil gas including the levels of CO2, carbon isotope measurements (12C, 13C and 14C) and 222Rn activity was recorded at a soil depth of 80 cm. Isotopic analysis revealed that the CO2 was young and there was no difference in the age of soil CO2 above either carbonate or non-carbonate bedrock. The data also suggest that the 13C-enrichment in soil CO2, above carbonate bedrock was a consequence of the mixing of soil CO2 with atmospheric CO2 and/or the ventilation of subterranean CO2 from pores, fissures and cavities. The latter effect was supported by the high 222Rn concentrations observed at these sites. Based on the \(\delta^{13} {\text{C}}_{{{\text{CO}}_{2} }}\) data, photosynthesis prevailed over microbial respiration accounting for the majority (>70 %) of total soil CO2 over non-carbonate bedrock—at least at the time of sampling. Overall, results from this study could represent useful information for global carbon cycle models used to predict the impacts of climate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. δ 13C (‰) = [(13C/12C)sample/(13C/12C)std−1] *1000, where (13C/12C)sample and (13C/12C)std are abundance ratios of the sample and reference standard (V-PDB), respectively.

References

  • Allison CE, Francey RJ, Krummel PB (2003) δ13C in CO2 from sites in the CSIRO atmospheric research GASLAB air sampling network, in trends: a compendium of data on global change, carbon dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., U.S. Dep. of Energy, Oak Ridge, TN. http://cdiac.ornl.gov/trends/co2/allison-csiro/allcsiro-alt.html. Accessed 21 Mar 2015

  • Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global soil respiration record. Nature 464:579–582

    Article  Google Scholar 

  • Carmi I, Yakir D, Yechieli Y, Kronfeld J, Stiller M (2013) Variations in soil CO2 concentrations and isotopic values in a semi-arid region due to biotic and abiotic processes in the unsaturated zone. Radiocarbon 55:932–942

    Article  Google Scholar 

  • Čater M, Ogrinc N (2011) Soil respiration rates and δ13CCO2 in natural beech forest (Fagus sylvatica L.) in relation to stand structure. Isot Environ Health Stud 47:221–237. doi:10.1080/10256016.2011.578214

    Article  Google Scholar 

  • Cerling TE, Solomon DK, Quade J, Bowman JR (1991) On the isotopic composition of carbon in soil carbon dioxide. Geochim Cosmochim Acta 55:3403–3405. doi:10.1016/0016-7037(91)90498-T

    Article  Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni RB, Piao S, Thornton P (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York, pp 465–570

    Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  Google Scholar 

  • Dörr H, Münnich KO (1986) Annual variations of the 14C content of soil CO2. Radiocarbon 2A:338–345

    Article  Google Scholar 

  • Ekblad A, Högberg P (2001) Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia 127:305–308. doi:10.1007/s004420100667

    Article  Google Scholar 

  • Emmerich WE (2003) Carbon dioxide fluxes in a semiarid environment with high carbonate soils. Agr Forest Meteorol 116:91–102. doi:10.1016/S0168-1923(02)00231-9

    Article  Google Scholar 

  • Etiope G, Lombardi S (1995) Evidence for radon transport by carrier gas through faulted clays in Italy. J Radioanal Nucl Chem 193:291–300. doi:10.1007/BF02039886

    Article  Google Scholar 

  • Etiope G, Martinelli G (2002) Migration of carrier and trace gases in the geosphere: an overview. Phys Earth Planet Inter 129:185–204. doi:10.1016/S0031-9201(01)00292-8

    Article  Google Scholar 

  • Fujiyoshi R, Haraki Y, Sumiyoshi T, Amano H, Kobal I, Vaupotič J (2009) Tracing the sources of gaseous components (222Rn, CO2 and its carbon isotopes) in soil air under a cool-deciduous stand in Sapporo, Japan. Environ Geochem Health 32:73–82. doi:10.1007/s10653-009-9266-1

    Article  Google Scholar 

  • Fujiyoshi R, Amano H, Yousuke S, Okamoto K, Sumiyoshi T, Kobal I, Vaupotič J (2012) Practical evaluation of carbon sources of forest soils in Slovenia from stable and radio-carbon isotope measurements. Environ Earth Sci 67:133–140. doi:10.1007/s12665-011-1486-x

    Article  Google Scholar 

  • Högberg P, Buchmann N, Read DJ (2006) Comments on Yakov Kuzyakov’s review ‘sources of CO2 efflux from soil and review of partitioning methods’ [Soil Biology & Biochemistry 38, 425–448]. Soil Biol Biochem 38:2997–2998. doi:10.1016/j.soilbio.2006.04.001

    Article  Google Scholar 

  • Kardos R, Gregorič A, Jónás J, Vaupotič J, Kovács T, Ishimori Y (2015) Dependence of radon emanation of soil on lithology. J Radioanal Nucl Chem 304:1321–1327. doi:10.1007/s10967-015-3954-3

    Article  Google Scholar 

  • Knohl A, Werner RA, Geilmann H, Brand WA (2004) Kel-F (TM) discs improve storage time of canopy air samples in 10-mL vials for CO2-delta C-13 analysis. Rapid Commun Mass Spectrom 18:1663–1665

    Article  Google Scholar 

  • Kovács T, Szeiler G, Fábián F, Kardos R, Gregorič A, Vaupotič J (2013) Systematic survey of natural radioactivity of soil in Slovenia. J Environ Radioact 122:70–78. doi:10.1016/j.jenvrad.2013.02.007

    Article  Google Scholar 

  • Kozak K, Mazur J, Vaupotič J, Kobal I, Janik M, Kochowska E (2009) Calibration of the IJS-CRn and IFJ-PAN radon measuring devices in the IFJ-KR-600 radon chamber. Jožef Stefan Institute Report IJS-DP-10103

  • Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38:425–448. doi:10.1016/j.soilbio.2005.08.020

    Article  Google Scholar 

  • Kuzyakov Y, Gavrichkova O (2010) Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Global Change Biol 16:3386–3406

    Article  Google Scholar 

  • Lambert WJ, Aharon P (2011) Controls on dissolved inorganic carbon and δ13C in cave waters from DeSoto Caverns: implications for speleothem δ13C assessments. Geochim Cosmochim Acta 3:753–768. doi:10.1016/j.gca.2010.11.006

    Article  Google Scholar 

  • Levin I, Naegler T, Kromer B, Diehl M, Francey RJ, Gomez-Pelaez AJ, Steele PL, Wagenbach D, Weller R, Worthy DE (2010) Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2. Tellus 62B:26–46

    Article  Google Scholar 

  • Liu W, Moriizumi J, Yamazawa H, Iida T (2006) Depth profiles of radiocarbon and carbon isotopic compositions of organic matter and CO2 in a forest soil. J Environ Radioact 90:210–223

    Article  Google Scholar 

  • Neznal M, Šmarda J (1991) Radon infiltration risk from the ground in Chaby, Prague. In: Barnet I (ed) Radon investigations in Czechoslovakia II. Geological Survey, Prague, pp 34–39

    Google Scholar 

  • Ogrinc N, Kanduč T, Krajnc B, Vilhar U, Simončič P (2016) Inorganic and organic carbon dynamics in forested soils developed on contrasting geology in Slovenia—a stable isotope approach. J Soils Sediments 16:382–395. doi:10.1007/s11368-015-1255-7

    Article  Google Scholar 

  • Placer L (2008) Principles of the tectonic subdivision of Slovenia. Geology 51:205–217. doi:10.5474/geologija.2008.021

    Article  Google Scholar 

  • Plestenjak G, Eler K, Vodnik D, Ferlan M, Čater M, Kanduč T, Simončič P, Ogrinc N (2012) Sources of soil CO2 in calcareous grassland with woody plant encroachment. J Soils Sediments 12:1327–1338. doi:10.1007/s11368-012-0564-3

    Article  Google Scholar 

  • Quindós-Poncela LS, Fernandez PL, Sainz C, Arteche J, Arozamena JG, George AC (2003) An improved scintillation cell for radon measurements. Nucl Instrum Method A 512:606–609. doi:10.1016/S0168-9002(03)02049-7

    Article  Google Scholar 

  • Reichstein M, Beer C (2008) Soil respiration across scales: the importance of a model–data integration framework for data interpretation. J Plant Nutrit Soil Sci 171:344–354

    Article  Google Scholar 

  • Serrano-Ortiz P, Domingo F, Cazorla A, Were A, Cuezva S, Villagarcıa L, Alados- Arboledas L, Kowalski AS (2009) Interannual CO2 exchange of a sparse Mediterranean shrubland on a carbonaceous substrate. J Geophys Res 114:G04015. doi:10.1029/2009JG000983

    Article  Google Scholar 

  • Serrano-Ortiz P, Roland M, Sanchez-Moral S, Janssens IA, Domingo F, Godderis Y, Kowalski AS (2010) Hidden, abiotic CO2 flows and gaseous reservoirs in the terrestrial carbon cycle: review and perspectives. Agric Forest Meteorol 150:321–329. doi:10.1016/j.agrformet.2010.01.002

    Article  Google Scholar 

  • Spötl C (2004) A simple method of soil gas stable carbon isotope analysis. Rapid Commun Mass Spectrom 18:1239–1242. doi:10.1002/rcm.1468

    Article  Google Scholar 

  • Stone R (2008) Have desert researchers discovered a hidden loop in the carbon cycle? Science 320:1409–1410

    Article  Google Scholar 

  • Torn MS, Davis S, Bird JA, Shaw MR, Conrad ME (2003) Automated analysis of C-13/C-12 ratios in CO2 and dissolved inorganic carbon for ecological and environmental applications. Rapid Commun Mass Spectrom 17:2675–2682. doi:10.1002/rcm.1246

    Article  Google Scholar 

  • Trumbore S (2006) Carbon respired by terrestrial ecosystems—recent progress and challenges. Global Change Biol 12:141–153

    Article  Google Scholar 

  • Urbančič M, Simončič P, Prus T, Kutnar L (2005) Atlas gozdnih tal Slovenije. Zveza gozdarskih društev Slovenije/GIS, Ljubljana

    Google Scholar 

  • Vaupotič J, Ančik M, Škofljanec M, Kobal I (1992) A method for determination of indoor radon concentrations using α-scintillation cells. J Environ Sci Health A 27:15–35. doi:10.1016/0160-4120(88)90013-X

    Google Scholar 

  • Vaupotič J, Žvab P, Gregorič A, Kobal I, Kocman D, Kotnik J, Križman M (2008) Radon mapping in Slovenia based on its levels in soil gas. In: 33rd International geological congress abstract CD-ROM. X-CD Technologies, Oslo, pp EGG03742P

  • Werth M, Kuzyakov Y (2008) Root-derived carbon in soil respiration and microbial biomass using 14C and 13C. Soil Biol Biochem 40:625–637. doi:10.1016/j.soilbio.2007.09.022

    Article  Google Scholar 

  • Werth M, Kuzyakov Y (2010) 13C fractionation at root-microorganisms-soil interface: a review and outlook for partitioning studies. Soil Biol Biochem 42:1372–1384. doi:10.1016/j.soilbio.2010.04.009

    Article  Google Scholar 

  • Wohlfahrt G, Fenstermaker LF, Arnone JA (2008) Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem. Glob Change Biol 14:1475–1487. doi:10.1111/j.1365-2486.2008.01593.x

    Article  Google Scholar 

  • Xie J, Li Y, Zhai C, Li CZL (2008) CO2 absorption by alkaline soils and its implication to the global carbon cycle. Environ Geol 56:953–961. doi:10.1007/s00254-008r-r1197-0

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Slovenian Research Agency within the program no. P1-0143, the Slovenia-Japan cooperation in science and technology within the bilateral project BI-JP-10-12-002 and by the Japan Atomic Energy Agency (JAEA) for measuring carbon isotopes by AMS (2012A-F02, 2014A-F04). We would like to thank the staff members of the Mutsu AMS facility of the JAEA (Aomori Prefecture, Japan) for providing C isotope data of excellent quality. The study represents part of the doctoral dissertation research of B. Krajnc, which was supported by the Innovative schemes for co-financing of doctoral studies financed by the European Union through the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nives Ogrinc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krajnc, B., Fujiyoshi, R., Vaupotič, J. et al. Using 222Rn and carbon isotopes (12C, 13C and 14C) to determine CO2 sources in forest soils developed on contrasting geology in Slovenia. Environ Earth Sci 75, 1068 (2016). https://doi.org/10.1007/s12665-016-5866-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5866-0

Keywords

Navigation