Skip to main content
Log in

Hillslope runoff generation influenced by layered subsurface in a headwater catchment in Ore Mountains, Germany

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The Ore Mountains were one of the important flood source areas for several heavy floods over the last years. Reducing damages caused by floods demands sufficient information on the runoff generation processes in the catchments. The aim of this study is to provide insights into prevailing flow pathways, retention times and threshold behavior of a representative hillslope catchment with layered subsurface in the Ore Mountains. The study site is a forested headwater with gneiss as bedrock. We used hydrometrical methods, soil temperature data and sprinkler experiments. Results indicate that the hydraulic anisotropic structure of the deepest layer in 0.9–1.7 m depth is the major controlling factor for subsurface water flow paths. On one hand, this layer acts as an aquitard for seeping water because of its high bulk density. On the other hand, water within the layer is able to flow laterally because of the sandy texture and coarse clasts oriented parallel to the slope. Moreover, three pre-moisture controlled types of runoff processes were addressed. With low antecedent soil moisture, saturation overland flow dominates in the spring bog. With intermediate or high pre-moisture, interflow is generated. The measured runoff coefficients increase in a nonlinear manner with rising pre-moisture. A soil water tension threshold value near field capacity is the tipping point for nonlinear runoff response. These findings emphasize the impact of the layered structure of the subsurface and of antecedent soil moisture for runoff generation in low mountain ranges and may be useful for establishing flood warning systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • AGB (Arbeitsgruppe Boden) (2005) Bodenkundliche Kartieranleitung, 5th edn. Schweizerbart, Hannover

    Google Scholar 

  • Alaoui A, Caduff U, Gerke HH, Weingartner R (2011) Preferential flow effects on infiltration and runoff in grassland and forest soils. Vadose Zone 10:367–377. doi:10.2136/vzj2010.0076

    Article  Google Scholar 

  • Ali G, Tetzlaff D, McDonnell JJ, Soulsby C, Carey S, Laudon H, McGuire K, Buttle J, Seibert J, Shanley J (2015) Comparison of threshold hydrologic response across northern catchments. Hydrol Process 29:3575–3591. doi:10.1002/hyp.10527

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. FAO, Rome

  • Amoozegar A (1989) A compact constant-head permeameter for measuring saturated hydraulic conductivity of the vadose zone. Soil Sci Soc Am J 53(5):1356–1361

    Article  Google Scholar 

  • Anderson MG, Burt TP (1990) Subsurface runoff. In: Anderson MG, Burt TP (eds) Process studies in hillslope hydrology. Wiley, Chichester, pp 365–400

    Google Scholar 

  • Anderson AE, Weiler M, Alila Y, Hudson RO (2009) Subsurface flow velocities in a hillslope with lateral preferential flow. Water Resour Res 45:W11407. doi:10.1029/2008WR007121

    Google Scholar 

  • Badoux A, Witzig J, Germann PF, Kienholz H, Lüscher P, Weingartner R, Hegg C (2006) Investigations on the runoff generation at the profile and plot scales, Swiss Emmental. Hydrol Process 20:377–394

    Article  Google Scholar 

  • Beven KJ (2012) Rainfall-runoff modelling—the primer. Wiley, Chichester

    Book  Google Scholar 

  • Beven K, Germann P (2013) Macropores and water flow in soils revisited. Water Resour Res 49:3071–3092. doi:10.1002/wrcr.20156

    Article  Google Scholar 

  • Bronstert A, Creutzfeldt B, Graeff T, Hajnsek I, Heistermann M, Itzerott S, Jagdhuber T, Kneis D, Lück E, Reusser D, Zehe E (2012) Potentials and constraints of different types of soil moisture observations for flood simulations in headwater catchments. Nat Hazards 60:879–914

    Article  Google Scholar 

  • Casper M (2002) Die Identifikation hydrogeologischer Prozesse im Einzugsgebiet des Dürreychbaches (Nordschwarzwald). Mitteilungen des Instituts für Wasserwirtschaft und Kulturtechnik der Universität Karlsruhe 210. http://digbib.ubka.uni-karlsruhe.de/volltexte/1772002. Accessed 10 June 2013

  • Central Geological Institute (1984) Hydrogeological map of German Democratic Republic, Hydrogeological basis map 1:50.000, Zschopau/Sayda 1308-3/4, Berlin

  • Chifflard P (2006) Der Einfluss des Reliefs, der Hangsedimente und der Bodenvorfeuchte auf die Abflussbildung im Mittelgebirge—Experimentelle Prozess-Studien im Sauerland. Bochumer geographische Arbeiten 76. http://publik.tuwien.ac.at/files/PubDat_148040.pdf. Accessed 28 Sept 2011

  • Chifflard P, Didszun J, Zepp H (2008) Skalenübergreifende Prozess-Studien zur Abflussbildung in Gebieten mit periglazialen Deckschichten (Sauerland, Deutschland). Grundwasser 13:27–41

    Article  Google Scholar 

  • Color Munsell (1994) Munsell soil color charts. Gretag Macbeth, New Windsor

    Google Scholar 

  • Detty JM, McGuire KJ (2010) Threshold changes in storm runoff generation at a till-mantled headwater catchment. Water Resour Res 46:W07525. doi:10.1029/2009WR008102

    Article  Google Scholar 

  • Didszun J (2004) Experimentelle Untersuchungen zur Skalenabhängigkeit der Abflussbildung. Freiburger Schriften zur Hydrologie 19. http://www.hydrology.uni-freiburg.de/publika/FSH-BD19-Didszun.pdf. Accessed 10 May 2011

  • DIN ISO 11277 (2009) Soil quality—determination of particle size distribution in mineral soil material—method by sieving and sedimentation. International Organization for Standardization, Geneva

    Google Scholar 

  • Elrick DE, Reynolds WD (1992) Methods for analyzing constant-head permeameter data. Soil Sci Soc Am J 56:320–323

    Article  Google Scholar 

  • European Environment Agency (2001) Sustainable water use in Europe Part 3: extreme hydrological events: floods and droughts. Environmental Issue Report 21

  • Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (2003) Hydrological atlas of Germany. Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, Berlin

    Google Scholar 

  • Fue C, Chen J, Jiang H, Dong L (2013) Threshold behavior in a fissured granitic catchment in southern China: 1. Analysis of field monitoring results. Water Resour Res 49:2519–2535

    Article  Google Scholar 

  • Fujimoto M, Othe N, Tani M (2011) Effects of hillslope topography on runoff response in a small catchment in the Fudoji Experimental Watershed, Central Japan. Hydrol Process 25:1874–1886

    Article  Google Scholar 

  • Gleeson T, Manning AH (2008) Regional groundwater flow in mountainous terrain: three-dimensional simulations of topographic and hydrogeologic controls. Water Resour Res 44:W10403. doi:10.1029/2008WR006848

    Article  Google Scholar 

  • Graham C, McDonnell JJ, Woods R (2010a) Hillslope threshold response to storm rainfall: (1) A field based forensic approach. J Hydrol 393:65–76. doi:10.1016/j.jhydrol.2009.12.015

    Article  Google Scholar 

  • Graham CB, van Verseveld W, Barnard HR, McDonnell JJ (2010b) Estimating the deep seepage component of the hillslope and catchment water balance within a measurement uncertainty framework. Hydrol Process 24:3631–3647

    Article  Google Scholar 

  • Heller K (2012) Einfluss periglazialer Deckschichten auf die oberflächennahen Fließwege am Hang-eine Prozessstudie im Osterzgebirge, Sachsen. Dissertation, Technical University of Dresden. http://www.qucosa.de/fileadmin/data/qucosa/documents/9843/Dissertation_Heller_2012.pdf. Accessed 1 Feb 2013

  • Hendriks MR (2010) Introduction to physical hydrology. Oxford University Press, New York

    Google Scholar 

  • Hillel D (2004) Introduction to environmental soil physics. Elsevier Academic Press, Amsterdam

    Google Scholar 

  • Hölting B, Coldewey WG (2013) Hydrogeologie. Springer, Berlin

    Book  Google Scholar 

  • Horlacher HB, Heyer T, Carstensen D, Bielagk U, Bielitz E, Müller U (2007) Analysis of dyke breaks during the 2002 flood in Saxony/Germany. FWU Water Resour Publ 6:58–66. http://www.uni-siegen.de/zew/publikationen/volume0607/heyer.pdf. Accessed 25 July 2014

  • Hrachowitz M, Savenije HHG, Blöschl G, McDonnell JJ, Sivapalan M, Pomeroy JW, Arheimer B, Blume T, Clark MP, Ehret U, Fenicia F, Freer JE, Gelfan A, Gupta HV, Hughes DA, Hut RW, Montanari A, Pande S, Tetzlaff D, Troch PA, Uhlenbrook S, Wagener T, Winsemius HC, Woods RA, Zehe E, Cudennec C (2013) A decade of Predictions in Ungauged Basins (PUB)—a review. Hydrol Sci J 58(6):1198–1255. doi:10.1080/02626667.2013.803183

    Article  Google Scholar 

  • Hübner R, Heller K, Günther T, Kleber A (2015) Monitoring hillslope moisture dynamics with surface ERT for enhancing spatial significance of hydrometric point measurements. Hydrol Earth Syst Sci 19:225–240. doi:10.5194/hess-19-225-2015

    Article  Google Scholar 

  • Hümann M, Schüler G, Müller C, Schneider R, Johst M, Caspari T (2011) Identification of runoff processes—the impact of different forest types and soil properties on runoff formation and floods. J Hydrol 409:637–649

    Article  Google Scholar 

  • Johst M (2011) Experimentelle und modellgestützte Untersuchungen zur Hochwasserentstehung im Nordpfälzer Bergland unter Verwendung eines neuartigen Spatial-TDR-Bodenfeuchtemessgeräts. Dissertation, University of Trier. http://ubt.opus.hbz-nrw.de/volltexte/2011/651/. Accessed 14 June 2013

  • Jordan H, Weder JH (1995) Hydrogeologie: Grundlagen und Methoden; Regionale Hydrogeologie: Mecklenburg-Vorpommern, Brandenburg und Berlin, Sachsen-Anhalt, Sachsen, Thüringen. Enke, Stuttgart

    Google Scholar 

  • Kim HJ, Sidle RC, Moore RD, Hudson R (2004) Throughflow variability during snowmelt in a forested mountain catchment, coastal British Columbia, Canada. Hydrol Process 18:1219–1236

    Article  Google Scholar 

  • Kim HJ, Sidle RC, Moore RD (2005) Shallow lateral flow from a forested hillslope: influence of antecedent wetness. Catena 60:293–306

    Article  Google Scholar 

  • Kirby MJ (1985) Hillslope hydrology. In: Anderson MG, Burt TP (eds) Hydrological forecasting. Wiley, Chichester, pp 37–75

    Google Scholar 

  • Kleber A (1997) Cover-beds as soil parent materials in mid-latitude regions. Catena 30:197–213

    Article  Google Scholar 

  • Kleber A (2000) Compound soil horizons with mixed calcic and argillic properties—examples from the northern Great Basin, USA. Catena 41:111–131

    Article  Google Scholar 

  • Kleber A, Gusev VV (1998) Soil parent materials in the Moshaysk-district, Russia. Catena 34:61–74

    Article  Google Scholar 

  • Kleber A, Schellenberger A (1998) Slope hydrology triggered by cover-beds. With an example from the Frankenwald Mountains, northeastern Bavaria. Z Geomorphol NF 42:469–482

    Google Scholar 

  • Kleber A, Leopold M, Vonlanthen C, Völkel J (2013a) Transferring the concept of cover beds. In: Kleber A, Terhorst B (eds) Mid-latitude slope deposits (cover beds). Developments in Sedimentology 66. Elsevier, Amsterdam, pp 171–228

    Chapter  Google Scholar 

  • Kleber A, Terhorst B, Bullmann H, Hülle D, Leopold M, Müller S, Raab T, Sauer D, Scholten T, Dietze M, Felix-Henningsen P, Heinrich J, Spies ED, Thiemeyer H (2013b) Subdued mountains of Central Europe. In: Kleber A, Terhorst B (eds) Mid-latitude slope deposits (cover beds). Developments in Sedimentology 66. Elsevier, Amsterdam, pp 9–81

    Chapter  Google Scholar 

  • Koo MH, Kim Y (2008) Modelling of water flow and heat transport in the vadose zone: numerical demonstration of variability of local groundwater recharge in response to monsoon rainfall in Korea. Geosci J 12(2):123–137

    Article  Google Scholar 

  • Lorz C, Heller K, Kleber A (2011) Stratification of the regolith continuum—a key property for processes and functions of landscapes. Zeitschrift für Geomorphologie 55(3):277–292

    Article  Google Scholar 

  • Marchi L, Borga M, Preciso E, Gaume E (2010) Characterisation of selected extreme flash floods in Europe and implications for flood risk management. J Hydrol 394:118–133

    Article  Google Scholar 

  • McDonnell JJ (2003) Where does water go when it rains? Moving beyond the variable source area concept of rainfall-runoff response. Hydrol Process 17:1869–1875

    Article  Google Scholar 

  • McDonnell JJ, Sivapalan M, Vaché K, Dunn S, Grant G, Haggerty R, Hinz C, Hooper R, Kirchner J, Roderick ML, Selker J, Weiler M (2007) Moving beyond heterogeneity and process complexity: a new vision for watershed hydrology. Water Resour Res 43:W07301. doi:10.1029/2006WR005467

    Article  Google Scholar 

  • McGlynn BL, McDonnell JJ, Seibert J, Kendall C (2004) Scale effects on headwater catchment runoff timing, flow sources, and groundwater-streamflow relations. Water Resour Res 40:W07504. doi:10.1029/2003WR002494

    Article  Google Scholar 

  • Mehlhorn J (1998) Tracerhydrologische Ansätze in der Niederschlags-Abfluss-Modellierung. Freiburger Schriften zur Hydrologie 8. http://www.hydrology.uni-freiburg.de/publika/FSH-Bd08-Mehlhorn.pdf. Accessed 12 April 2014

  • Moldenhauer KM, Heller K, Chifflard P, Hübner R, Kleber A (2013) Influence of cover beds on slope hydrology. In: Kleber A, Terhorst B (eds) Mid-latidute slope deposits (cover beds). Developments in Sedimentology 66. Elsevier, Amsterdam, pp 127–152

    Chapter  Google Scholar 

  • NOAA (2010) Flash flood early warning system reference guide. University Corporation for Atmosphere Research. http://www.meted.ucar.edu/communities/hazwarnsys/ffewsrg/FF_EWS.pdf. Accessed 1 Dec 2015

  • Noguchi S, Tsuboyama Y, Sidle RC, Hosoda I (2001) Subsurface runoff characteristics from a forest hillslope soil profile including macropores, Hitachi Ohta, Japan. Hydrol Process 15:2131–2149

    Article  Google Scholar 

  • Nordmann B, Gottlein A, Binder F (2009) Influence of different tree species on runoff formation—an example of a catchment in the low-mountain range Franconian Forest, Germany. Hydrol Wasserbewirtsch 53(2):80–95

    Google Scholar 

  • O’Brian RJ, Misstear BD, Gill LW, Deakin JL, Flynn R (2013) Developing an integrated hydrograph separation and lumped modeling approach to quantifying hydrological pathways in Irish river catchments. J Hydrol 486:259–270

    Article  Google Scholar 

  • Ollier C, Pain C (1996) Regolith, soils and landforms. Wiley, Chichester

    Google Scholar 

  • Paton TR, Humphreys GS, Mitchell PB (1995) Soils—a new global view. UCL-Press, London

    Google Scholar 

  • Phillips JD (2001) Inherited vs. acquired complexity in east Texas weathering profiles. Geomorphology 40:1–14

    Article  Google Scholar 

  • Phillips JD, Lorz C (2008) Origins and implications of soil layering. Earth Sci Rev 89:144–155

    Article  Google Scholar 

  • Raab T, Leopold M, Völkel J (2007) Character, age and ecological significance of pleistocene periglacial slope deposits in Germany. Phys Geogr 28(6):451–473

    Article  Google Scholar 

  • Sanda M, Cislerova M (2009) Transforming hydrographs in the hillslope subsurface. J Hydrol Hydromech 57:264–275. doi:10.2478/v10098-009-0023-z

    Article  Google Scholar 

  • Sanda M, Vitvar T, Kulasova A, Jankovec J, Cislerova M (2014) Run-off formation in a humid, temperate headwater catchment using combined hydrological, hydrochemical and isotopic approach (Jizera Mountains, Czech Republic). Hydrol Process 28:3217–3229. doi:10.1002/hyp.9847

    Article  Google Scholar 

  • Sauer TJ, Logsdon SD (2002) Hydraulic and physical properties of stony soils in a small watershed. Soil Sci Soc Am 66:1947–1956

    Article  Google Scholar 

  • Schneider R, Schobel S, Niebes D, Schröder D (2001) Untersuchungen zur Hochwasserentstehung im Labor und Gelände auf unterschiedlichen Skalenniveaus. Mitt Dtsch Bodenkd Ges 96(2):653–654

    Google Scholar 

  • Schneider P, Pool S, Strouhal L, Seibert J (2014) True colors—experimental identification of hydrological processes at a hillslope prone to slide. Hydrol Earth Syst Sci 18:875–892. doi:10.5194/hess-18-875-2014

    Article  Google Scholar 

  • Schobel S (2008) Infiltrations-und Bodenabflussprozesse in Abhängigkeit von Landnutzung und Substrat in der Trier-Bitburger Mulde. Dissertation, University of Trier. http://ubt.opus.hbz-nrw.de/volltexte/2008/493/pdf/SchobelSteffen_20080917.pdf Accessed 3 Dec 2011

  • Scholten T, Altermann M, Schwanecke W, Felix-Henningsen P (1999) Die Bedeutung periglazialer Lagen für Funktionen des Bodens im Ostharz. Mitt Dtsch Bodenkd Ges 91(2):1096–1099

    Google Scholar 

  • Schröter K, Mühr B, Elmer F, Kunz-Plapp T, Trieselmann W (2013) June 2013 Flood in Central Europe—Focus Germany, Report 1—Update 2: preconditions, meteorology, hydrology. Center for Disaster Management and Risk Reduction Technology. https://www.cedim.de/download/FDA_Juni_Hochwasser_Bericht1-ENG.pdf. Accessed 2 Oct 2014

  • Schwarze R, Beudert B (2009) Analyse der Hochwassergenese und des Wasserhaushalts eines bewaldeten Einzugsgebietes unter dem Einfluss eines massiven Borkenkäferbefalls. Hydrol Wasserbewirtsch 53(4):236–249

    Google Scholar 

  • Seeger T (1990) Abfluß-und Stofffrachtseparation im Buntsandstein des Nordschwarzwaldes. Tübinger Geowissenschaftliche Arbeiten 6(C), pp 49–54

  • Sir M, Tesar M (2013) Water retention and runoff formation in the Krkonose Mts. Opera Corcon 50:97–106

    Google Scholar 

  • Sivapalan M, Takeuchi K, Franks SW, Gupta VK, Karambiri H, Lakshmi V, Liang X, McDonnell JJ, Mendiondo EM, O’Connell PE, Oki T, Pomeroy JW, Schertzer D, Uhlenbrook S, Zehe E (2003) IAHS decade on predictions in ungauged basins (PUB), 2003–2012: shaping an exciting future for the hydrological sciences. Hydrol Sci J 48(6):857–880

    Article  Google Scholar 

  • Srinivasan MS, Gburek WJ, Hamlett JM (2002) Dynamics of stormflow generation—a hillslope-scale field study in east-central Pennsylvania, USA. Hydrol Process 16:649–665

    Article  Google Scholar 

  • Tabaggh A, Bendjoudi H, Benderitter Y (1999) Determination of recharge in unsaturated soils using temperature monitoring. Water Resour Res 35:2439–2446

    Article  Google Scholar 

  • Tesar M, Sir M (2013) Early warning system for flash floods in the Krkonose Mts. Opera Corcon 50:107–112

    Google Scholar 

  • Tesar M, Sir M, Prazak J, Lichner L (2004) Instability driven flow and runoff formation in a small catchment. Geol Acta 2:147–156

    Google Scholar 

  • Tetzlaff D, Carey SK, Laudon H, McGuire K (2010) Catchment processes and heterogeneity at multiple scales—benchmarking observations, conceptualization and prediction. Hydrol Process 24:2203–2208

    Article  Google Scholar 

  • Tetzlaff D, Birkel C, Dick J, Geris J, Soulsby C (2014) Storage dynamics in hydropedological units control hillslope connectivity, runoff generation, and the evolution of catchment transit time distributions. Water Resour Res 50:969–985. doi:10.1002/2013WR014147

    Article  Google Scholar 

  • Tromp-van Meerfeld HJ, McDonnell JJ (2006) Threshold relations in subsurface stormflow: 2. The fill and spill hypothesis. Water Res Res 42(2):W02411. doi:10.1029/2004wr003800

    Google Scholar 

  • Uhlemann S, Thieken AH, Merz B (2010) A consistent set of trans-basin floods in Germany between 1952–2002. Hydrol Earth Syst Sci 14:1277–1295. doi:10.5194/hess-14-1277-2010

    Article  Google Scholar 

  • Uhlenbrook S, Didszun J, Wenninger J (2008) Source areas and mixing of runoff components at the hillslope scale—a multi-technical approach. Hydrol Sci J 53(4):741–753

    Article  Google Scholar 

  • USDA (1999) Soil Taxonomy. A basic system of soil classification for making and interpreting soil surveys. Agricultural Handbook 436. Soil Survey Stuff, Washington

  • Veit H (1993) Upper Quaternary landscape and climate evolution in the Norte Chico (northern Chile): an overview. Mt Res Dev 13:139–144

    Article  Google Scholar 

  • Voeckler HM, Allen DM, Alila Y (2014) Modeling coupled surface water–groundwater processes in a small mountainous headwater catchment. J Hydrol 517:1089–1106

    Article  Google Scholar 

  • Völkel J, Zepp H, Kleber A (2002) Periglaziale Deckschichten in Mittelgebirgen-ein offenes Forschungsfeld. Ber Dtsch Landeskd 76(2/3):101–114

    Google Scholar 

  • Von Freyberg J, Radny D, Gall HE, Schirmer M (2014) Implications of hydrologic connectivity between hillslopes and riparian zones on streamflow composition. J Contam Hydrol 169:62–74

    Article  Google Scholar 

  • Weiler M, McDonnell JJ (2004) Virtual experiments: a new approach for improving process conceptualization in hillslope hydrology. J Hydrol 285:3–18

    Article  Google Scholar 

  • Wenninger J, Uhlenbrook S, Tilch N, Leibundgut C (2004) Experimental evidence of fast groundwater responses in a hillslope/floodplain area in the Black Forest Mountains, Germany. Hydrol Process 18:3305–3322

    Article  Google Scholar 

  • Weyman DR (1973) Measurements of the downslope flow of water in a soil. J Hydrol 20:267–288

    Article  Google Scholar 

  • Zehe E, Sivapalan M (2009) Threshold behavior in hydrological systems as (human) geo-ecosystems: manifestations, controls, implications. Hydrol Earth Syst Sci 13:1273–1297

    Article  Google Scholar 

Download references

Acknowledgments

The financial means for measurement instrumentation, as well as installation and operation of the measuring field, were funded by the Institute of Geography, Technical University of Dresden. Furthermore, we thank the forest district Marienberg for the permission to install the measurement equipment in the headwater under study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Heller.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “Water in Germany,” guest edited by Daniel Karthe, Peter Chifflard, Bernd Cyffka, Lucas Menzel, Heribert Nacken, Uta Raeder, Mario Sommerhäuser and Markus Weiler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heller, K., Kleber, A. Hillslope runoff generation influenced by layered subsurface in a headwater catchment in Ore Mountains, Germany. Environ Earth Sci 75, 943 (2016). https://doi.org/10.1007/s12665-016-5750-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5750-y

Keywords

Navigation