Skip to main content

Temperature-dependent dissolution of residual non-aqueous phase liquids: model development and verification

Abstract

The use of heat storages in the subsurface, especially in urbanized areas, may conflict with existing subsurface contaminations of non-aqueous phase liquids (NAPL). In this work, available data and models regarding temperature influences on parameters for kinetic NAPL dissolution of trichloroethene (TCE) are summarized, discussed and implemented into a numerical simulator. As systematic data on temperature-dependent TCE solubility, diffusion coefficients and dissolution rates are sparse, a set of high-resolution quasi-2D laboratory NAPL dissolution experiments using TCE was conducted at 10, 20, 40 and 70 °C. Because the experimental data show incomplete dissolution of the residual TCE–NAPL, two different classes of TCE–NAPL blobs representing fast and slow dissolution kinetics were introduced in the model. A good agreement of model simulations and experimental measurements of TCE mass flow rates could thus be obtained for each temperature investigated. The numerical model thus can be applied to simulate kinetic dissolution of residual NAPL source zones in groundwater under variable temperature conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • AGEB (2013) Anwendungsbilanzen für die Endenergiesektoren in Deutschland in den Jahren 2011 und 2012 mit Zeitreihen von 2008 bis 2012. Arbeitsgemeinschaft Energiebilanzen e.V, Berlin

    Google Scholar 

  • Ballarini E, Bauer S, Eberhardt C, Beyer C (2012) Evaluation of transverse dispersion effects in tank experiments by numerical modeling: parameter estimation, sensitivity analysis and revision of experimental design. J Contam Hydrol 134–135:22–36. doi:10.1016/j.jconhyd.2012.04.001

    Article  Google Scholar 

  • Ballarini E, Bauer S, Eberhardt C, Beyer C (2014) Evaluation of the role of heterogeneities on transverse mixing in bench-scale tank experiments by numerical modeling. Groundwater 52(3):368–377. doi:10.1111/gwat.12066

    Article  Google Scholar 

  • Bauer R, Rolle M, Bauer S, Eberhardt C, Grathwohl P, Kolditz O, Meckenstock R, Griebler C (2009) Enhanced biodegradation by hydraulic heterogeneities in petroleum hydrocarbon plumes. J Contam Hydrol 105(1–2):56–68

    Article  Google Scholar 

  • Bauer S, Beyer C, Dethlefsen F, Dietrich P, Duttmann R, Ebert M, Feeser V, Görke U, Köber R, Kolditz O, Rabbel W, Schanz T, Schäfer D, Würdemann H, Dahmke A (2013) Impacts of the use of the geological subsurface for energy storage: an investigation concept. Environ Earth Sci 70(8):3935–3943. doi:10.1007/s12665-013-2883-0

    Article  Google Scholar 

  • Bauer S, Pfeiffer T, Boockmeyer A, Dahmke A, Beyer C (2015) Quantifying induced effects of subsurface renewable energy storage. Energy Procedia 76:633–641. doi:10.1016/j.egypro.2015.07.885

    Article  Google Scholar 

  • Bear J, Bachmat Y (1990) introduction to modeling of transport phenomena in porous media. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Beyke G, Fleming D (2005) In situ thermal remediation of DNAPL and LNAPL using electrical resistance heating. Remediation 15(3):5–22

    Article  Google Scholar 

  • Bradford SA, Leij FJ (1997) Estimating interfacial areas for multi-fluid soil systems. J Contam Hydrol 27:83–105

    Article  Google Scholar 

  • Butscher C, Huggenberger P, Auckenthaler A, Bänninger D (2011) Risikoorientierte Bewilligung von Erdwärmesonden. Grundwasser 16:13–24

    Article  Google Scholar 

  • Chen F, Freedman DL, Falta RW, Murdoch LC (2012) Henry’s law constants of chlorinated solvents at elevated temperatures. Chemosphere 86:156–165

    Article  Google Scholar 

  • Cho J, Annable MD (2005) Characterization of pore scale NAPL morphology in homogeneous sands as a function of grain size and NAPL dissolution. Chemosphere 61:899–908

    Article  Google Scholar 

  • Cussler EL (2009) Diffusion: mass transfer in fluid systems, 3rd edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Davis EL, Lien BK (1993) Laboratory study on the use of hot water to recover light oily wastes from sands. U.S. Environmental Protection Agency, Robert S. Kerr Environmental Research Laboratory, Ada

    Google Scholar 

  • Domenico PA, Palciauskas VV (1982) Alternative boundaries in solid waste management. Groundwater 20:303–311

    Article  Google Scholar 

  • Grandel S, Dahmke A (2008) Leitfaden: Natürliche Schadstoffminderung bei LCKW-kontaminierten Standorten: Methoden, Empfehlungen und Hinweise zur Untersuchung und Beurteilung, KORA: Themenverbund 3: Chemische Industrie, Metallverarbeitung. University of Kiel, Institute for Geoscience, Department Applied Geology. Kiel

  • Grathwohl P (1998) Diffusion in natural porous media: contaminant transport, sorption/desorption and dissolution kinetics. Topics in environmental fluid mechanics. Springer Science + Business Media, New York

    Book  Google Scholar 

  • Hayduk W, Laudie H (1974) Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions. AIChE J 20(3):611–615

    Article  Google Scholar 

  • Helmig R (1997) Multiphase flow and transport processes in the subsurface: a contribution to the modeling of hydrosystems. Springer, Berlin

    Book  Google Scholar 

  • Heron G, Christensen TH, Enfield CG (1998) Henry’s law constant for trichloroethylene between 10 and 95°C. Environ Sci Technol 32:1433–1437

    Article  Google Scholar 

  • Heron G, Baker R, Bierschenk J, LaChance J (2006) Heat it all the way: mechanisms and results achieved using in-situ thermal remediation. In: Paper F-13, in: Bruce M. Sass (Conference Chair), remediation of chlorinated and recalcitrant compounds-2006. Proceedings of the fifth international conference on remediation of chlorinated and recalcitrant compounds. Monterey

  • Hiester U, Müller M, Koschitzky HP, Trötschler O, Roland U, Holzer F, (2013) Guidelines: In situ thermal treatment (ISTT) for source zone remediation of soil and groundwater. Helmholtz Centre for Environmental Research: UFZ, Department of Groundwater Remediation. Leipzig

  • Horvarth AL, Getzen FW, Maczynska Z (1999) IUPAC-NIST solubility data series: 67. Halogenated ethanes and ethenes with water. J Phys Chem Ref Data 28(2):395–628

    Article  Google Scholar 

  • IAPWS (2007) Revised release on the IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam. International Association for the Properties of Water and Steam, Lucerne

    Google Scholar 

  • Illangasekare TH, Marr JM, Siegrist RL, Soga K, Glover KC, Moreno-Barbero E, Heiderscheidt JL, Saenton S, Matthew M, Kaplan AR, Kim Y, Dai D, Page JWE (2006) Mass transfer from entrapped DNAPL sources undergoing remediation: characterization methods and prediction tools. Report of SERDP project No. CU-1294, Colorado State of Mines. Golden, Colorado

  • Imhoff PT, Jaffé PR, Pinder GF (1994) An experimental study of complete dissolution of a nonaqueous phase liquid in saturated porous media. Water Resour Res 30(2):307–320

    Article  Google Scholar 

  • Imhoff PT, Frizzell A, Miller CT (1997) Evaluation of thermal effects on the dissolution of a nonaqueous phase liquid in porous media. Environ Sci Technol 31:1615–1622

    Article  Google Scholar 

  • Knauss KG, Dibley MJ, Leif RN, Mew DA, Aines RD (2000) The aqueous solubility of trichloroethene (TCE) and tetrachloroethene (PCE) as a function of temperature. Appl Geochem 15:501–512

    Article  Google Scholar 

  • Kokkinaki A, O’Carroll DM, Werth CJ, Sleep BE (2013) An evaluation of Sherwood–Gilland models for NAPL dissolution and their relationship to soil properties. J Contam Hydrol 155:87–98

    Article  Google Scholar 

  • Kolditz O, Bauer S, Bilke L, Böttcher N, Delfs JO, Fischer T, Görke UJ, Kalbacher T, Kosakowski G, McDermott CI, Park CH, Radu F, Rink K, Shao H, Shao HB, Sun F, Sun YY, Singh AK, Taron J, Walther M, Wang W, Watanabe N, Wu Y, Xie M, Xu W, Zehner B (2012) OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ Earth Sci 67:589–599

    Article  Google Scholar 

  • Kolditz O, Shao H, Wang W, Bauer S (2015) Thermo-hydro-mechanical-chemical processes in fractured porous media: modelling and benchmarking. Springer International Publishing, Berlin

    Google Scholar 

  • Kueper BH, Abbott W, Farquhar G (1989) Experimental observations of multiphase flow in heterogeneous porous media. J Contam Hydrol 5:83–95

    Article  Google Scholar 

  • Li D, Bauer S, Benisch K, Graupner B, Beyer C (2014) OpenGeoSys-ChemApp: a coupled simulator for reactive transport in multiphase systems and application to CO2 storage formation in Northern Germany. Acta Geotech 9(1):67–79. doi:10.1007/s11440-013-0234-7

    Article  Google Scholar 

  • LLUR (2011) Leitfaden zur geothermischen Nutzung des oberflächennahen Untergrundes: Erdwärmekollektoren - Erdwärmesonden; Empfehlung für Planer, Ingenieure und Bauherrn. Landesamt für Landwirtschaft, Umwelt und ländliche Räume Schleswig-Holstein, Flintbek

    Google Scholar 

  • Miller CT, Poirier-McNeill MM, Mayer AS (1990) Dissolution of trapped nonaqueous phase liquids: mass transfer characteristics. Water Resour Res 26(1):2783–2796

    Article  Google Scholar 

  • Mitiku AB, Li D, Bauer S, Beyer C (2013) Geochemical modelling of CO2–water–rock interactions in a potential storage formation of the North German sedimentary basin. Appl Geochem 36:168–186. doi:10.1016/j.apgeochem.2013.06.008

    Article  Google Scholar 

  • Nambi IM, Powers SE (2003) Mass transfer correlations for nonaqueous phase liquid dissolution from regions with high initial saturations. Water Resour Res 39(2):1030. doi:10.1029/2001WR000667

    Article  Google Scholar 

  • Ogata A, Banks RB (1961) A solution of the differential equation of longitudinal dispersion in porous media. U.S. Geological Survey Professional Paper 411-A. Washington

  • Park CH, Böttcher N, Wang W, Kolditz O (2011) Are upwind techniques in multi-phase flow models necessary? J Comput Phys 230:8304–8312

    Article  Google Scholar 

  • Popp S, Beyer C, Dahmke A, Bauer S (2015) Model development and numerical simulation of a seasonal heat storage in a contaminated shallow aquifer. Energy Procedia 76:361–370. doi:10.1016/j.egypro.2015.07.842

    Article  Google Scholar 

  • Powers SE, Abriola LM, Weber WJ Jr (1994) An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems: transient mass transfer rates. Water Resour Res 30(2):321–332

    Article  Google Scholar 

  • Rolle M, Eberhardt C, Chiogna G, Cirpka OA, Grathwohl P (2009) Enhancement of dilution and transverse reactive mixing in porous media: experiments and model-based interpretation. J Contam Hydrol 110(3–4):130–142

    Article  Google Scholar 

  • Rossi F, Cucciniello R, Intiso A, Proto A, Motta O, Marchettini N (2015) Determination of the trichloroethylene diffusion coefficient in water. AIChE J 61(10):3511–3515

    Article  Google Scholar 

  • Saba T, Illangasekare TH (2000) Effect of groundwater flow dimensionality on mass transfer from entrapped nonaqueous phase liquid contaminants. Water Resour Res 36(4):971–979

    Article  Google Scholar 

  • Saba T, Illangasekare TH, Ewing J (2001) Investigation of surfactant-enhanced dissolution of entrapped nonaqueous phase liquid chemicals in a two-dimensional groundwater flow field. J Contam Hydrol 51:63–82

    Article  Google Scholar 

  • Saripalli KP, Kim H, Rao PSC, Annable MD (1997) Measurement of specific fluid-fluid interfacial areas of immiscible fluids in porous media. Environ Sci Technol 31:932–936

    Article  Google Scholar 

  • Schiedek T, Grathwohl P, Teutsch G (1997) Literaturstudie zum natürlichen Rückhalt/Abbau von Schadstoffen im Grundwasser.- Bericht des Lehrstuhls für Angewandte Geologie, Universität Tübingen (im Auftrag der Landesanstalt für Umweltschutz Baden-Württemberg)

  • Schwarzenbach RP, Gschwend PM, Imboden DM (1993) Environmental organic chemistry. Wiley, New York

    Google Scholar 

  • Tuck DM, Iversen GM, Pirkle WA (2003) Organic dye effects on dense nonaqueous phase liquids (DNAPL) entry pressure in water saturated porous media. Water Resour Res 39(8):1207. doi:10.1029/2001WR001000

    Article  Google Scholar 

  • WHG (2009) Gesetz zur Ordnung des Wasserhaushaltes (Wasserhaushaltsgesetz: WHG). Nov 2015. http://www.gesetze-im-internet.de/bundesrecht/whg_2009/gesamt.pdf

  • Wilke CR, Chang P (1955) Correlation of diffusion coefficients in dilute solutions. AIChE J 1(2):264–270

    Article  Google Scholar 

  • Worch E (1993) Eine neue Gleichung zur Berechnung von Diffusionskoeffizienten gelöster Stoffe. Vom Wasser 81:289–297

    Google Scholar 

  • Yaws CL (2009) Transport properties of chemicals and hydrocarbons: viscosity, thermal conductivity, and diffusivity of C1 to C100 organics and Ac to Zr inorganics. William Andrew Inc., Norwich

    Google Scholar 

Download references

Acknowledgments

The presented work was performed within the ANGUS+ research project (Grant Number 03EK3022). We acknowledge funding of this project provided by the German Federal Ministry of Education and Research (BMBF) through Projektträger Jülich (PTJ) in the context of the Energy storage initiative “Forschungsinitiative Energiespeicher”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffi Popp.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “Subsurface Energy Storage”, guest edited by Sebastian Bauer, Andreas Dahmke, and Olaf Kolditz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Popp, S., Beyer, C., Dahmke, A. et al. Temperature-dependent dissolution of residual non-aqueous phase liquids: model development and verification. Environ Earth Sci 75, 953 (2016). https://doi.org/10.1007/s12665-016-5743-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5743-x

Keywords

  • Kinetic NAPL dissolution
  • Temperature effects
  • Gilland–Sherwood model
  • Model verification
  • OpenGeoSys