Temperature-dependent dissolution of residual non-aqueous phase liquids: model development and verification

  • Steffi PoppEmail author
  • Christof Beyer
  • Andreas Dahmke
  • Nicolas Koproch
  • Ralf Köber
  • Sebastian Bauer
Thematic Issue
Part of the following topical collections:
  1. Subsurface Energy Storage


The use of heat storages in the subsurface, especially in urbanized areas, may conflict with existing subsurface contaminations of non-aqueous phase liquids (NAPL). In this work, available data and models regarding temperature influences on parameters for kinetic NAPL dissolution of trichloroethene (TCE) are summarized, discussed and implemented into a numerical simulator. As systematic data on temperature-dependent TCE solubility, diffusion coefficients and dissolution rates are sparse, a set of high-resolution quasi-2D laboratory NAPL dissolution experiments using TCE was conducted at 10, 20, 40 and 70 °C. Because the experimental data show incomplete dissolution of the residual TCE–NAPL, two different classes of TCE–NAPL blobs representing fast and slow dissolution kinetics were introduced in the model. A good agreement of model simulations and experimental measurements of TCE mass flow rates could thus be obtained for each temperature investigated. The numerical model thus can be applied to simulate kinetic dissolution of residual NAPL source zones in groundwater under variable temperature conditions.


Kinetic NAPL dissolution Temperature effects Gilland–Sherwood model Model verification OpenGeoSys 



The presented work was performed within the ANGUS+ research project (Grant Number 03EK3022). We acknowledge funding of this project provided by the German Federal Ministry of Education and Research (BMBF) through Projektträger Jülich (PTJ) in the context of the Energy storage initiative “Forschungsinitiative Energiespeicher”.


  1. AGEB (2013) Anwendungsbilanzen für die Endenergiesektoren in Deutschland in den Jahren 2011 und 2012 mit Zeitreihen von 2008 bis 2012. Arbeitsgemeinschaft Energiebilanzen e.V, BerlinGoogle Scholar
  2. Ballarini E, Bauer S, Eberhardt C, Beyer C (2012) Evaluation of transverse dispersion effects in tank experiments by numerical modeling: parameter estimation, sensitivity analysis and revision of experimental design. J Contam Hydrol 134–135:22–36. doi: 10.1016/j.jconhyd.2012.04.001 CrossRefGoogle Scholar
  3. Ballarini E, Bauer S, Eberhardt C, Beyer C (2014) Evaluation of the role of heterogeneities on transverse mixing in bench-scale tank experiments by numerical modeling. Groundwater 52(3):368–377. doi: 10.1111/gwat.12066 CrossRefGoogle Scholar
  4. Bauer R, Rolle M, Bauer S, Eberhardt C, Grathwohl P, Kolditz O, Meckenstock R, Griebler C (2009) Enhanced biodegradation by hydraulic heterogeneities in petroleum hydrocarbon plumes. J Contam Hydrol 105(1–2):56–68CrossRefGoogle Scholar
  5. Bauer S, Beyer C, Dethlefsen F, Dietrich P, Duttmann R, Ebert M, Feeser V, Görke U, Köber R, Kolditz O, Rabbel W, Schanz T, Schäfer D, Würdemann H, Dahmke A (2013) Impacts of the use of the geological subsurface for energy storage: an investigation concept. Environ Earth Sci 70(8):3935–3943. doi: 10.1007/s12665-013-2883-0 CrossRefGoogle Scholar
  6. Bauer S, Pfeiffer T, Boockmeyer A, Dahmke A, Beyer C (2015) Quantifying induced effects of subsurface renewable energy storage. Energy Procedia 76:633–641. doi: 10.1016/j.egypro.2015.07.885 CrossRefGoogle Scholar
  7. Bear J, Bachmat Y (1990) introduction to modeling of transport phenomena in porous media. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  8. Beyke G, Fleming D (2005) In situ thermal remediation of DNAPL and LNAPL using electrical resistance heating. Remediation 15(3):5–22CrossRefGoogle Scholar
  9. Bradford SA, Leij FJ (1997) Estimating interfacial areas for multi-fluid soil systems. J Contam Hydrol 27:83–105CrossRefGoogle Scholar
  10. Butscher C, Huggenberger P, Auckenthaler A, Bänninger D (2011) Risikoorientierte Bewilligung von Erdwärmesonden. Grundwasser 16:13–24CrossRefGoogle Scholar
  11. Chen F, Freedman DL, Falta RW, Murdoch LC (2012) Henry’s law constants of chlorinated solvents at elevated temperatures. Chemosphere 86:156–165CrossRefGoogle Scholar
  12. Cho J, Annable MD (2005) Characterization of pore scale NAPL morphology in homogeneous sands as a function of grain size and NAPL dissolution. Chemosphere 61:899–908CrossRefGoogle Scholar
  13. Cussler EL (2009) Diffusion: mass transfer in fluid systems, 3rd edn. Cambridge University Press, New YorkCrossRefGoogle Scholar
  14. Davis EL, Lien BK (1993) Laboratory study on the use of hot water to recover light oily wastes from sands. U.S. Environmental Protection Agency, Robert S. Kerr Environmental Research Laboratory, AdaGoogle Scholar
  15. Domenico PA, Palciauskas VV (1982) Alternative boundaries in solid waste management. Groundwater 20:303–311CrossRefGoogle Scholar
  16. Grandel S, Dahmke A (2008) Leitfaden: Natürliche Schadstoffminderung bei LCKW-kontaminierten Standorten: Methoden, Empfehlungen und Hinweise zur Untersuchung und Beurteilung, KORA: Themenverbund 3: Chemische Industrie, Metallverarbeitung. University of Kiel, Institute for Geoscience, Department Applied Geology. KielGoogle Scholar
  17. Grathwohl P (1998) Diffusion in natural porous media: contaminant transport, sorption/desorption and dissolution kinetics. Topics in environmental fluid mechanics. Springer Science + Business Media, New YorkCrossRefGoogle Scholar
  18. Hayduk W, Laudie H (1974) Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions. AIChE J 20(3):611–615CrossRefGoogle Scholar
  19. Helmig R (1997) Multiphase flow and transport processes in the subsurface: a contribution to the modeling of hydrosystems. Springer, BerlinCrossRefGoogle Scholar
  20. Heron G, Christensen TH, Enfield CG (1998) Henry’s law constant for trichloroethylene between 10 and 95°C. Environ Sci Technol 32:1433–1437CrossRefGoogle Scholar
  21. Heron G, Baker R, Bierschenk J, LaChance J (2006) Heat it all the way: mechanisms and results achieved using in-situ thermal remediation. In: Paper F-13, in: Bruce M. Sass (Conference Chair), remediation of chlorinated and recalcitrant compounds-2006. Proceedings of the fifth international conference on remediation of chlorinated and recalcitrant compounds. MontereyGoogle Scholar
  22. Hiester U, Müller M, Koschitzky HP, Trötschler O, Roland U, Holzer F, (2013) Guidelines: In situ thermal treatment (ISTT) for source zone remediation of soil and groundwater. Helmholtz Centre for Environmental Research: UFZ, Department of Groundwater Remediation. LeipzigGoogle Scholar
  23. Horvarth AL, Getzen FW, Maczynska Z (1999) IUPAC-NIST solubility data series: 67. Halogenated ethanes and ethenes with water. J Phys Chem Ref Data 28(2):395–628CrossRefGoogle Scholar
  24. IAPWS (2007) Revised release on the IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam. International Association for the Properties of Water and Steam, LucerneGoogle Scholar
  25. Illangasekare TH, Marr JM, Siegrist RL, Soga K, Glover KC, Moreno-Barbero E, Heiderscheidt JL, Saenton S, Matthew M, Kaplan AR, Kim Y, Dai D, Page JWE (2006) Mass transfer from entrapped DNAPL sources undergoing remediation: characterization methods and prediction tools. Report of SERDP project No. CU-1294, Colorado State of Mines. Golden, ColoradoGoogle Scholar
  26. Imhoff PT, Jaffé PR, Pinder GF (1994) An experimental study of complete dissolution of a nonaqueous phase liquid in saturated porous media. Water Resour Res 30(2):307–320CrossRefGoogle Scholar
  27. Imhoff PT, Frizzell A, Miller CT (1997) Evaluation of thermal effects on the dissolution of a nonaqueous phase liquid in porous media. Environ Sci Technol 31:1615–1622CrossRefGoogle Scholar
  28. Knauss KG, Dibley MJ, Leif RN, Mew DA, Aines RD (2000) The aqueous solubility of trichloroethene (TCE) and tetrachloroethene (PCE) as a function of temperature. Appl Geochem 15:501–512CrossRefGoogle Scholar
  29. Kokkinaki A, O’Carroll DM, Werth CJ, Sleep BE (2013) An evaluation of Sherwood–Gilland models for NAPL dissolution and their relationship to soil properties. J Contam Hydrol 155:87–98CrossRefGoogle Scholar
  30. Kolditz O, Bauer S, Bilke L, Böttcher N, Delfs JO, Fischer T, Görke UJ, Kalbacher T, Kosakowski G, McDermott CI, Park CH, Radu F, Rink K, Shao H, Shao HB, Sun F, Sun YY, Singh AK, Taron J, Walther M, Wang W, Watanabe N, Wu Y, Xie M, Xu W, Zehner B (2012) OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ Earth Sci 67:589–599CrossRefGoogle Scholar
  31. Kolditz O, Shao H, Wang W, Bauer S (2015) Thermo-hydro-mechanical-chemical processes in fractured porous media: modelling and benchmarking. Springer International Publishing, BerlinGoogle Scholar
  32. Kueper BH, Abbott W, Farquhar G (1989) Experimental observations of multiphase flow in heterogeneous porous media. J Contam Hydrol 5:83–95CrossRefGoogle Scholar
  33. Li D, Bauer S, Benisch K, Graupner B, Beyer C (2014) OpenGeoSys-ChemApp: a coupled simulator for reactive transport in multiphase systems and application to CO2 storage formation in Northern Germany. Acta Geotech 9(1):67–79. doi: 10.1007/s11440-013-0234-7 CrossRefGoogle Scholar
  34. LLUR (2011) Leitfaden zur geothermischen Nutzung des oberflächennahen Untergrundes: Erdwärmekollektoren - Erdwärmesonden; Empfehlung für Planer, Ingenieure und Bauherrn. Landesamt für Landwirtschaft, Umwelt und ländliche Räume Schleswig-Holstein, FlintbekGoogle Scholar
  35. Miller CT, Poirier-McNeill MM, Mayer AS (1990) Dissolution of trapped nonaqueous phase liquids: mass transfer characteristics. Water Resour Res 26(1):2783–2796CrossRefGoogle Scholar
  36. Mitiku AB, Li D, Bauer S, Beyer C (2013) Geochemical modelling of CO2–water–rock interactions in a potential storage formation of the North German sedimentary basin. Appl Geochem 36:168–186. doi: 10.1016/j.apgeochem.2013.06.008 CrossRefGoogle Scholar
  37. Nambi IM, Powers SE (2003) Mass transfer correlations for nonaqueous phase liquid dissolution from regions with high initial saturations. Water Resour Res 39(2):1030. doi: 10.1029/2001WR000667 CrossRefGoogle Scholar
  38. Ogata A, Banks RB (1961) A solution of the differential equation of longitudinal dispersion in porous media. U.S. Geological Survey Professional Paper 411-A. WashingtonGoogle Scholar
  39. Park CH, Böttcher N, Wang W, Kolditz O (2011) Are upwind techniques in multi-phase flow models necessary? J Comput Phys 230:8304–8312CrossRefGoogle Scholar
  40. Popp S, Beyer C, Dahmke A, Bauer S (2015) Model development and numerical simulation of a seasonal heat storage in a contaminated shallow aquifer. Energy Procedia 76:361–370. doi: 10.1016/j.egypro.2015.07.842 CrossRefGoogle Scholar
  41. Powers SE, Abriola LM, Weber WJ Jr (1994) An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems: transient mass transfer rates. Water Resour Res 30(2):321–332CrossRefGoogle Scholar
  42. Rolle M, Eberhardt C, Chiogna G, Cirpka OA, Grathwohl P (2009) Enhancement of dilution and transverse reactive mixing in porous media: experiments and model-based interpretation. J Contam Hydrol 110(3–4):130–142CrossRefGoogle Scholar
  43. Rossi F, Cucciniello R, Intiso A, Proto A, Motta O, Marchettini N (2015) Determination of the trichloroethylene diffusion coefficient in water. AIChE J 61(10):3511–3515CrossRefGoogle Scholar
  44. Saba T, Illangasekare TH (2000) Effect of groundwater flow dimensionality on mass transfer from entrapped nonaqueous phase liquid contaminants. Water Resour Res 36(4):971–979CrossRefGoogle Scholar
  45. Saba T, Illangasekare TH, Ewing J (2001) Investigation of surfactant-enhanced dissolution of entrapped nonaqueous phase liquid chemicals in a two-dimensional groundwater flow field. J Contam Hydrol 51:63–82CrossRefGoogle Scholar
  46. Saripalli KP, Kim H, Rao PSC, Annable MD (1997) Measurement of specific fluid-fluid interfacial areas of immiscible fluids in porous media. Environ Sci Technol 31:932–936CrossRefGoogle Scholar
  47. Schiedek T, Grathwohl P, Teutsch G (1997) Literaturstudie zum natürlichen Rückhalt/Abbau von Schadstoffen im Grundwasser.- Bericht des Lehrstuhls für Angewandte Geologie, Universität Tübingen (im Auftrag der Landesanstalt für Umweltschutz Baden-Württemberg)Google Scholar
  48. Schwarzenbach RP, Gschwend PM, Imboden DM (1993) Environmental organic chemistry. Wiley, New YorkGoogle Scholar
  49. Tuck DM, Iversen GM, Pirkle WA (2003) Organic dye effects on dense nonaqueous phase liquids (DNAPL) entry pressure in water saturated porous media. Water Resour Res 39(8):1207. doi: 10.1029/2001WR001000 CrossRefGoogle Scholar
  50. WHG (2009) Gesetz zur Ordnung des Wasserhaushaltes (Wasserhaushaltsgesetz: WHG). Nov 2015.
  51. Wilke CR, Chang P (1955) Correlation of diffusion coefficients in dilute solutions. AIChE J 1(2):264–270CrossRefGoogle Scholar
  52. Worch E (1993) Eine neue Gleichung zur Berechnung von Diffusionskoeffizienten gelöster Stoffe. Vom Wasser 81:289–297Google Scholar
  53. Yaws CL (2009) Transport properties of chemicals and hydrocarbons: viscosity, thermal conductivity, and diffusivity of C1 to C100 organics and Ac to Zr inorganics. William Andrew Inc., NorwichGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Steffi Popp
    • 1
    Email author
  • Christof Beyer
    • 1
  • Andreas Dahmke
    • 1
  • Nicolas Koproch
    • 1
  • Ralf Köber
    • 1
  • Sebastian Bauer
    • 1
  1. 1.Institute of GeosciencesKiel UniversityKielGermany

Personalised recommendations