Skip to main content

Advertisement

Log in

Impact assessment of climate change on a coastal groundwater system, Central Vietnam

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Coastal plains in Central Vietnam are characterized by strong seasonal precipitation. As predicted by the A1B gas emission scenario, higher precipitation with more extremes is expected by 2050 for Central Vietnam. To assess impact of these changes on the groundwater resources of the coastal aquifers, a statistical downscaling method with the weather generator LARS-WG coupled with the physically distributed rainfall–runoff model WetSpa and the variable-density groundwater flow model SEAWAT is employed. Results show that contrary to expectation the increase in precipitation by 2050 for the wet months of October and December leads to a sharp decrease in groundwater recharge and groundwater head and consequently a decrease in groundwater resources for the study area. It is concluded that in the assessment of impact of climate change on groundwater resources of coastal sloping plains controlling factors like precipitation intensity in combination with terrain characteristics of the recharge area of aquifers play a major role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Rupa Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:D05109. doi:10.1029/2005JD006290

    Google Scholar 

  • Allan RP, Soden BJ (2008) Atmospheric warming and the amplification of precipitation extremes. Science 321:1481–1494. doi:10.1126/science.1160787

    Article  Google Scholar 

  • Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232. doi:10.1038/nature01092

    Article  Google Scholar 

  • Alpert P, Ben-Gai T, Baharad A, Benjamini Y, Yekutieli D, Colacino M, Diodato L, Ramis C, Homar V, Romero R, Michaelides S, Manes A (2002) The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophys Res Lett. doi:10.1029/2001GL013554

    Google Scholar 

  • Arnell NW, Reynard NS (1993) Impacts of climate change on river flow regimes in the United Kingdom. Institute of Hydrology, NERC, Water Directorate, DOE, July 1993

  • Barron O, Crosbie R, Dawes W, Pollock D, Charles S, Mpelasoka F, Aryal S, Michael Donn M, Wurcker B (2010) The impact of climate change on groundwater resources: The climate sensitivity of groundwater recharge in Australia. CSIRO Water for a Healthy Country Flagship, Canberra

    Google Scholar 

  • Be KV (2003) Synthesis Report on Drilling Execution and Assessment of Complementary Groundwater Reserve for Well-field in Gio Linh Town, Quang Tri Province. Groundwater Exploitation and Business Company No. 1. 66 pages. Hanoi, Archives of Department of Water Resources Management of Vietnam. (in Vietnamese)

  • Beran MA (1986) The water resources impact of future climatic change and variability. In: Titus JG (ed) Effects of changes in stratospheric ozone and global climate, vol 1. US EPA/UNEP, Washington, pp 299–328

    Google Scholar 

  • Brooks RH, Corey AT (1966) Properties of porous media affecting fluid flow. J Irrig Drain Eng ASCE 92(IR 2):61–88

    Google Scholar 

  • Burn DH (1994) Hydrologic effects of climatic change in west-central Canada. J Hydrol 160:53–70. doi:10.1016/0022-1694(94)90033-7

    Article  Google Scholar 

  • Chang SW, Clement TP, Simpson MJ, Lee K (2011) Does sea-level rise have an impact on saltwater intrusion? Adv Water Resour 34:1283–1291. doi:10.1016/j.advwatres.2011.06.006

    Article  Google Scholar 

  • Chou C, Neelin JD (2004) Mechanisms of global warming impacts on regional tropical precipitation. J Clim 17(13):2688–2701. doi:10.1175/1520-0442(2004)017<2688:MOGWIO>2.0.CO;2

    Article  Google Scholar 

  • Chou C, Neelin JD, Chen CA, Tu JY (2009) Evaluating the ‘rich-get-richer’ mechanism in tropical precipitation change under global warming. J Clim 22(8):1982–2005. doi:10.1175/2008JCLI2471.1

    Article  Google Scholar 

  • Dai A (2001) Global precipitation and thunderstorm frequencies. I. Seasonal and interannual variations. J Clim 14(6):1092–1111. doi:10.1175/1520-0442(2001)014<1092:GPATFP>2.0.CO;2

    Article  Google Scholar 

  • Dams J, Salvadore E, Van Daele T, Ntegeka V, Willems P, Batelaan O (2012) Spatio-temporal impact of climate change on the groundwater system. Hydrol Earth Syst Sci 16:1517–1531. doi:10.5194/hess-16-1517-2012

    Article  Google Scholar 

  • Dao Manh Tien, ed. (2006). Investigation on geology, mineral resources, environment geology and geological hazards in shallow offshore zone (0–30 seawater depth) of Southern Central Vietnam, scale 1:100.000 and 1:50.000. Archives of Geology, General Department of Geology and Mineral Resources of Vietnam. (in Vietnamese)

  • Dawes W, Ali R, Varma S, Emelyanova I, Hodgson G, McFarlane D (2012) Modelling the effects of climate and land cover change on groundwater recharge in south-west Western Australia. Hydrol Earth Syst Sci 16:2709–2722. doi:10.5194/hess-16-2709-2012

    Article  Google Scholar 

  • Folland CK, Palmer TN, Parker ED (1986) Sahel rainfall and world-wide sea temperatures 1901–1985. Nature 320:602–607. doi:10.1038/320602a0

    Article  Google Scholar 

  • Gu G, Adler RF, Huffman GJ, Curtis S (2007) Tropical rainfall variability on interannual-to-interdecadal/longer-time scales derived from the GPCP monthly product. J Clim 20(15):4033–4046. doi:10.1175/JCLI4227.1

    Article  Google Scholar 

  • Ha DT (2014) Mekong Delta rural water supply situations and development measures. J Hydraul Eng Environ Sci 46:34–40 (in Vietnamese)

    Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19(21):5686–5699. doi:10.1175/JCLI3990.1

    Article  Google Scholar 

  • Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319:83–95. doi:10.1016/j.jhydrol.2005.07.003

    Article  Google Scholar 

  • Lin JL, Kiladis GN, Mapes BE, Weickmann KM, Sperber KR, Lin W, Wheeler MC, Schubert SD, Del Genio A, Donner LJ, Emori S, Gueremy JF, Hourdin F, Rasch PJ, Roeckner E, Scinocca JF (2006) Tropical intraseasonal variability in 14 IPCC AR4 climate models. Convective signals. J Clim 19(12):2665–2690. doi:10.1175/JCLI3735.1

    Article  Google Scholar 

  • Liu YB, Gebremeskel S, De Smedt F, Hoffmann L, Pfister L (2003) A diffusive transport approach for flow routing in GIS-based flood modelling. J Hydrol 283:91–106. doi:10.1007/s10666-005-0306-7

    Article  Google Scholar 

  • Liu YB, De Smedt F, Hoffmann L, Pfister L (2004) Assessing land use impact on flood processes in complex terrain by using GIS and modeling approach. Environ Model Assess 9(4):227–235. doi:10.1007/s10666-005-0306-7

    Article  Google Scholar 

  • Liu YB, Batelaan O, De Smedt F, Huong NT, Tam VT (2005) Test of a distributed modelling approach to predict flood flows in the karst Suoimuoi catchment, Vietnam. Environ Geol 48:931–940. doi:10.1007/s00254-005-0031-1

    Article  Google Scholar 

  • Mall RK, Gupta A, Singh R, Singh RS, Rathore LS (2006) Water resources and climate change: an Indian perspective. Curr Sci 90(12):1610–1626

    Google Scholar 

  • Milly PCD, Wetherald RT, Dunne KA, Delworth TL (2002) Increasing risk of great floods in a changing climate. Nature 415:514–517. doi:10.1038/415514a

    Article  Google Scholar 

  • Mollema PN, Antonellini M (2013) Seasonal variation in natural recharge of coastal aquifers. Hydrogeol J 21:787–797. doi:10.1007/s10040-013-0960-9

    Article  Google Scholar 

  • MONRE (2012a) (Ministry of Natural Resources and Environment) Climate change scenarios and sea level rise for Vietnam, Hanoi. (in Vietnamese)

  • MONRE (2012b) (Minister of Natural Resources and Environment) National strategy on climate change, Hanoi. (in Vietnamese)

  • MONRE (2013) (Ministry of Natural Resources and Environment) Documentation to assess the impact of climate change and adaptation measures, Hanoi. (in Vietnamese)

  • Nguyen Bieu, ed. (2001) Investigation on geology and mineral resources in shallow offshore zone (0-30 seawater depth) of Vietnam, scale 1:500.000. Archives of Geology, General Department of Geology and Mineral Resources of Vietnam. (in Vietnamese)

  • Nyenje PM, Batelaan O (2009) Estimating the effects of climate change on groundwater recharge and baseflow in the upper Ssezibwa catchment, Uganda. Hydrol Sci J 54(4):713–726. doi:10.1623/hysj.54.4.713

    Article  Google Scholar 

  • Oude Essink GHP, van Baaren ES, de Louw PGB (2010) Effects of climate change on coastal groundwater systems: a modeling study in the Netherlands. Water Resour Res 46:W00F04. doi:10.1029/2009WR008719

    Article  Google Scholar 

  • Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) (2007) Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Chapter 3. Cambridge University Press, Cambridge, UK

  • Rasmussen P, Sonnenborg TO, Goncear G, Hinsby K (2013) Assessing impacts of climate change, sea level rise, and drainage canals on saltwater intrusion to coastal aquifer. Hydrol Earth Syst Sci 17:421–443. doi:10.5194/hess-17-421-2013

    Article  Google Scholar 

  • Rosenberg NJ, Epstein DJ, Wang D, Vail L, Srinivasan R, Arnold JG (1999) Possible impacts of global warming on the hydrology of the Ogallala Aquifer Region. Clim Change 42:677–692. doi:10.1023/A:1005424003553

    Article  Google Scholar 

  • Safari A, De Smedt F, Moreda F (2012) WetSpa model application in the Distributed Model Intercomparison Project (DMIP2). J Hydrol 418–419:78–89. doi:10.1016/j.jhydrol.2009.04.001

    Article  Google Scholar 

  • Schmidt-Thomé P, Nguyen H, Pham L, Jarva J, Nuottimäki K (2015) Climate change adaptation measures in Vietnam. Springer, Berlin. doi:10.1007/978-3-319-12346-2

    Book  Google Scholar 

  • Semenov MA, Barrow EM (2002) LARS-WG, A stochastic weather generator for use in climate impact studies, User Manual. Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK

  • Sulzbacher H, Wiederhold H, Siemon B, Grinat M, Igel J, Burschil T, Günther T, Hinsby K (2012) Numerical modelling of climate change impacts on freshwater lenses on the North Sea Island of Borkum using hydrological and geophysical methods. Hydrol Earth Syst Sci 16:3621–3643. doi:10.5194/hess-16-3621-2012

    Article  Google Scholar 

  • Tam VT, Batelaan O, Le TT, Nhan PQ (2014) Three-dimensional hydrostratigraphical modelling to support evaluation of recharge and saltwater intrusion in a coastal groundwater system in Vietnam. Hydrogeol J 22:1749–1762. doi:10.1007/s10040-014-1185-2

    Article  Google Scholar 

  • Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47:123–138. doi:10.3354/cr00953

    Article  Google Scholar 

  • Vansteenkiste T, Tavakoli M, Van Steenbergen N, De Smedt F, Batelaan O, Pereira F, Willems P (2014a) Intercomparison of five lumped and distributed models for catchment runoff and extreme flow simulation. J Hydrol 511:335–349. doi:10.1016/j.jhydrol.2014.01.050

    Article  Google Scholar 

  • Vansteenkiste T, Tavakoli M, Ntegeka V, De Smedt F, Batelaan O, Pereira F, Willems P (2014b) Intercomparison of hydrological model structures and calibration approaches in climate scenario impact projections. J Hydrol 519:743–755. doi:10.1016/j.jhydrol.2014.07.062

    Article  Google Scholar 

  • Webb MD, Howard KWF (2011) Modeling the transient response of saline intrusion to rising sea-levels. Ground Water 49(4):560–569. doi:10.1111/j.1745-6584.2010.00758.x

    Article  Google Scholar 

  • Werner AD, Simmons CT (2009) Impact of sea-level rise on sea water intrusion in coastal aquifers. Ground Water 47(2):197–204. doi:10.1111/j.1745-6584.2008.00535.x

    Article  Google Scholar 

Download references

Acknowledgments

This study is carried out within the cooperative research project “Study to build a toolset for assessment of impact of global climate change and SLR on groundwater resources and ability to meet water use demand of local residents in coastal areas of Vietnam”, which is funded by the National Foundation for Science and Technology Development of Vietnam (NAFOSTED) and the Research Foundation—Flanders (FWO), Grant GA00312N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Okke Batelaan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tam, V.T., Batelaan, O. & Beyen, I. Impact assessment of climate change on a coastal groundwater system, Central Vietnam. Environ Earth Sci 75, 908 (2016). https://doi.org/10.1007/s12665-016-5718-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5718-y

Keywords

Navigation