Skip to main content

Advertisement

Log in

A study of using cosmic-ray muon radiography to detect CO2 leakage from a primary storage into geological formations

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In CO2 geological sequestration, a combination of monitoring techniques needs to be in place to timely detect possible CO2 leakage from a primary storage along unanticipated pathways to shallower formations. This research aims to methodologically investigate the feasibility of a novel radiographic technique, i.e. cosmic-ray muon radiography, as a complementary continuous monitoring method. As an example, this method was tested on a geological model to monitor CO2 leakage into upper freshwater aquifers. The effectiveness of the method was preliminarily established by high-fidelity simulations, including the sensitivity for responding to CO2 leakage and the spatial resolution that can be achieved by the method. The simulation results indicate an increase of penetrating flux of the cosmic-ray muons with the increase of CO2 leakage in the monitored aquifers. The sensitivity tends to be higher in monitoring leakage taking place in shallower depths. At depths of about 200 m, the detectable CO2 can be as low as 3 % measured in volume fraction with a relatively high confidence level. The spatial resolution can be achieved within a range from 10 to 20 m for measurements at depths of no more than 520 m, demonstrating the effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aglietta M, Alpat B, Alyea E, Antonioli P, Badino G, Bari G, Basile M, Berezinsky V, Bersani F, Bertaina M (1998) Muon “depth-intensity” relation measured by the LVD underground experiment and cosmic-ray muon spectrum at sea level. Phys Rev D 58:092005

    Article  Google Scholar 

  • Agostinelli S, Allison J, Amako KA, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G (2003) GEANT4—a simulation toolkit. Nucl Instrum Methods Phys Res, Sect A Accel Spectrom Detect Assoc Equip 506:250–303

    Article  Google Scholar 

  • Amsler C, Doser M, Antonelli M, Asner D, Babu K, Baer H, Band H, Barnett R, Bergren E, Beringer J (2008) Review of particle physics. Phys Lett B 667:1–6

    Article  Google Scholar 

  • Anderson S, Newell R (2004) Prospects for carbon capture and storage technologies. Annu Rev Environ Resour 29:109–142

    Article  Google Scholar 

  • Arts R, Eiken O, Chadwick A, Zweigel P, van der Meer L, Zinszner B (2004) Monitoring of CO2 injected at Sleipner using time-lapse seismic data. Energy 29:1383–1392

    Article  Google Scholar 

  • Birkholzer J, Zhou Q, Tsang C (2009) Large-scale impact of CO2 storage in deep saline aquifers: a sensitivity study on pressure response in stratified systems. Int J Greenh Gas Control 3:181–194

    Article  Google Scholar 

  • Borozdin KN, Hogan GE, Morris C, Priedhorsky WC, Saunders A, Schultz LJ, Teasdale ME (2003) Surveillance: radiographic imaging with cosmic-ray muons. Nature 422:277

    Article  Google Scholar 

  • Bugaev EV, Misaki A, Naumov VA, Sinegovskaya T, Sinegovsky S, Takahashi N (1998) Atmospheric muon flux at sea level, underground, and underwater. Phys Rev D 58:054001

    Article  Google Scholar 

  • Burkhard J, Fakhry A, Girgis A, Goneid A, Moussa AH, Mohammed-Sharkawi LY (1970) Search for hidden chambers in the pyramids. Science 167:832–839

    Article  Google Scholar 

  • Chadwick RA, Arts R, Bentham M, Eiken O, Holloway S, Kirby GA, Pearce JM, Williamson JP, Zweigel P (2009) Review of monitoring issues and technologies associated with the long-term underground storage of carbon dioxide. In: Evans DJ, Chadwick RA (eds) Underground gas storage: worldwide experiences and future development in the UK and Europe, 313th edn. Geological Society, Special Publications, London, pp 257–275

    Google Scholar 

  • Gaisser TK (1990) Cosmic rays and particle physics. Cambridge University Press, Cambridge

    Google Scholar 

  • Groom DE, Mokhov NV, Striganov SI (2001) Muon stopping power and range tables 10 MeV–100 TeV. At Data Nucl Data Tables 78:183–356

    Article  Google Scholar 

  • Hepple RP, Benson SM (2004) Geologic storage of carbon dioxide as a climate change mitigation strategy: performance requirements and the implications of surface seepage. Environ Geol 47:576–585

    Article  Google Scholar 

  • Jenneson P (2004) Large vessel imaging using cosmic-ray muons. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 525:346–351

    Article  Google Scholar 

  • Jiang X (2011) A review of physical modelling and numerical simulation of long-term geological storage of CO2. Appl Energy 88:3557–3566

    Article  Google Scholar 

  • Jiang X, Akber Hassan WA, Gluyas J (2013) Modelling and monitoring of geological carbon storage: a perspective on cross-validation. Appl Energy 112:784–792

    Article  Google Scholar 

  • Kak A, Slaney M (1999) Algorithms for reconstruction with nondiffracting source. Principles of computerized tomographic imaging. IEEE Press, New York

    Google Scholar 

  • Kudryavtsev VA, Spooner NC, Gluyas JG, Fung C, Coleman ML (2012) Monitoring subsurface CO2 emplacement and security of storage using muon tomography. Int J Greenh Gas Control 11:21–24

    Article  Google Scholar 

  • Lemmon E, McLinden M, Friend D, Linstrom P, Mallard W (2010) NIST chemistry webbook, Nist standard reference database number 69. Thermophysical Properties of Fluid Systems. National Institute of Standards and Technology, Gaithersburg

    Google Scholar 

  • Lesparre N, Gibert D, Marteau J, Déclais Y, Carbone D, Galichet E (2010) Geophysical muon imaging: feasibility and limits. Geophys J Int 183:1348–1361

    Article  Google Scholar 

  • Leung DYC, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev 39:426–443

    Article  Google Scholar 

  • Marteau J, Gibert D, Lesparre N, Nicollin F, Noli P, Giacoppo F (2012) Muons tomography applied to geosciences and volcanology. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 695:23–28

    Article  Google Scholar 

  • Mazess RB, Barden HS, Bisek JP, Hanson J (1990) Dual-energy x-ray absorptiometry for total-body and regional bone-mineral and soft-tissue composition. Am J Clin Nutr 51:1106–1112

    Google Scholar 

  • Nagamine K, Iwasaki M, Shimomura K, Ishida K (1995) Method of probing inner-structure of geophysical substance with the horizontal cosmic-ray muons and possible application to volcanic eruption prediction. Nucl Instrum Methods Phys Res, Sect A 356:585–595

    Article  Google Scholar 

  • Nakamura K, PD Group (2010) Review of particle physics. J Phys G Nucl Part Phys 37:075021

    Article  Google Scholar 

  • Nicot JP (2008) Evaluation of large-scale CO2 storage on fresh-water sections of aquifers: an example from the Texas Gulf Coast Basin. Int J Greenh Gas Control 2:582–593

    Article  Google Scholar 

  • Olive K A (2014 and 2015 update) Particle Data Group. Chin Phys C, 38, 090001

  • Park YC, Huh DG, Park CH (2013) A sensitivity study of pressure monitoring to detect fluid leakage from geological co2 storage site. Energy Procedia 37:4207–4214

    Article  Google Scholar 

  • Petersilka M, Bruder H, Krauss B, Stierstorfer K, Flohr TG (2008) Technical principles of dual source CT. Eur J Radiol 68:362–368

    Article  Google Scholar 

  • Priedhorsky WC, Borozdin KN, Hogan GE, Morris C, Saunders A, Schultz LJ, Teasdale ME (2003) Detection of high-Z objects using multiple scattering of cosmic ray muons. Rev Sci Instrum 74:4294–4297

    Article  Google Scholar 

  • Robinson M, Kudryavtsev V, Lüscher R, McMillan J, Lightfoot P, Spooner N, Smith N, Liubarsky I (2003) Measurements of muon flux at 1070 m vertical depth in the Boulby underground laboratory. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 511:347–353

    Article  Google Scholar 

  • Schultz L J (2003) Cosmic ray muon radiography (Doctoral dissertation). Portland State University

  • Socolow RH (2005) Can we bury global warming? Sci Am 293:49–55

    Article  Google Scholar 

  • Tanaka HKM (2014) Particle geophysics. Annu Rev Earth Planet Sci 42:535–549

    Article  Google Scholar 

  • Tanaka H K, Uchida T, Tanaka M, Shinohara H, Taira H (2009) Cosmic-ray muon imaging of magma in a conduit: degassing process of Satsuma-Iwojima Volcano, Japan. Geophys Res Lett 36:L01304

    Google Scholar 

  • Tanaka H, Nagamine K, Kawamura N, Nakamura SN, Ishida K, Shimomura K (2003) Development of a two-fold segmented detection system for near horizontally cosmic-ray muons to probe the internal structure of a volcano. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 507:657–669

    Article  Google Scholar 

  • Tanaka H, Nagamine K, Nakamura S, Ishida K (2005) Radiographic measurements of the internal structure of Mt. West Iwate with near-horizontal cosmic-ray muons and future developments. Nucl Instrum Methods Phys Res Sect A 555:164–172

    Article  Google Scholar 

  • Tanaka HKM, Nakano T, Takahashi S, Yoshida J, Niwa K (2007) Development of an emulsion imaging system for cosmic-ray muon radiography to explore the internal structure of a volcano, Mt. Asama. Nucl Instrum Methods Phys Res Sect A 575:489–497

    Article  Google Scholar 

  • Tanaka HK, Taira H, Uchida T, Tanaka M, Takeo M, Ohminato T, Aoki Y, Nishitama R, Shoji D, Tsuiji H (2010a) Three-dimensional computational axial tomography scan of a volcano with cosmic ray muon radiography. J Geophys Res Solid Earth 1978–2012:115

    Google Scholar 

  • Tanaka HKM, Uchida T, Tanaka M, Shinohara H, Taira H (2010b) Development of a portable assembly-type cosmic-ray muon module for measuring the density structure of a column of magma. Earth Planets Space 62:119–129

    Article  Google Scholar 

  • Wiese B, Zimmer M, Nowak M, Pellizzari L, Pilz P (2013) Well-based hydraulic and geochemical monitoring of the above zone of the CO2 reservoir at Ketzin, Germany. Environ Earth Sci 70:3709–3726

    Article  Google Scholar 

  • Yamamoto H, Zhang K, Karasaki K, Marui A, Uehara H, Nishikawa N (2009) Numerical investigation concerning the impact of CO2 geologic storage on regional groundwater flow. Int J Greenh Gas Control 3:586–599

    Article  Google Scholar 

  • Yamashina Y, Yamashina T, Taira H, Tanaka HKM (2010) Development of a cost-effective plastic scintillator for cosmic-ray muon radiography of a volcano. Earth Planets Space 62:173–177

    Article  Google Scholar 

  • Young HD (1962) Statistical treatment of experimental data. McGraw-Hill Inc, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, J., Jiang, X. A study of using cosmic-ray muon radiography to detect CO2 leakage from a primary storage into geological formations. Environ Earth Sci 75, 912 (2016). https://doi.org/10.1007/s12665-016-5711-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5711-5

Keywords

Navigation