Skip to main content
Log in

Isotopic characteristics of precipitation, groundwater, and stream water in an alpine region in southwest China

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The hydrological cycle has been enhanced under the warmer climatic conditions on the southeastern edge of the Tibetan Plateau, China. To investigate the complex hydrological system in the study area, δ18O and δ2H were measured on waters in a mountainous region—Huangbengliu watershed. The stream water tends to be isotopically more depleted in 18O and 2H than precipitation and groundwater, but more enriched than meltwater. A clear seasonality with higher isotopic values of stream water in summer and lower values in winter is evident, coinciding with the timing of the peak discharge. The correlation between δ18O and δ2H in stream water shows that the isotopic signature of precipitation is well preserved in stream flow, and the evaporation during the stream flow is only minor. The isotopic composition of stream water shows a decreasing trend from upstream to downstream, which results from tributary water inputs with heavy-isotope-depleted water. According to an isotopic mass-balance model, the fraction of meltwater inputs over the total stream flow ranged from 25.5 to 61.8 %. The study demonstrates that the ice–snow melting and tributary inputs are the prevailing mechanisms regulating stream isotope hydrology in alpine regions on the edge of the Tibetan Plateau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aizen VB, Aizen HM (1994) Regime and mass-energy exchange of subtropical latitude glaciers under monsoon climatic conditions—Gongga Shan, Sichuan, China. Mt Res Dev 14(2):101–118. doi:10.2307/3673794

    Article  Google Scholar 

  • Aizen V, Aizen E (1997) Hydrological cycles on the north and south peripheries of mountain-glacial basins of central Asia. Hydrol Process 11(5):451–469

    Article  Google Scholar 

  • Aizen V, Aizen E, Melack J, Martma T (1996) Isotopic measurements of precipitation on central Asian glaciers (southeastern Tibet, northern Himalayas, central Tien Shan). J Geophys Res 101(D4):9185–9196. doi:10.1029/96JD00061

    Article  Google Scholar 

  • Argiriou AA, Lykoudis S (2006) Isotopic composition of precipitation in Greece. J Hydrol 327(3):486–495. doi:10.1016/j.jhydrol.2005.11.053

    Article  Google Scholar 

  • Arjouni MY, Bennouna MA, El Fels MAE, Romane A (2015) Assessment of mineral elements and heavy metals in leaves of indigenous cypress of high Atlas Mountains. Nat Prod Res 29(8):764–767. doi:10.1080/14786419.2014.974052

    Article  Google Scholar 

  • Beniston M, Stoffel M (2014) Assessing the impacts of climatic change on mountain water resources. Sci Total Environ 493:1129–1137. doi:10.1016/j.scitotenv.2013.11.122

    Article  Google Scholar 

  • Bruna J, Wild J, Svoboda M, Heurich M, Mullerova J (2013) Impacts and underlying factors of landscape-scale, historical disturbance of mountain forest identified using archival documents. For Ecol Manag 305:294–306. doi:10.1016/j.foreco.2013.06.017

    Article  Google Scholar 

  • Craig H (1961) Isotope variations in meteoric waters. Science 133:1702–1703

    Article  Google Scholar 

  • Dalai TK, Bhattacharya SK, Krishnaswami S (2002) Stable isotopes in the source waters of the Yamuna and its tributaries: seasonal and altitudinal variations and relation to major cations. Hydrol Process 16(17):3345–3364. doi:10.1002/hyp.1104

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Article  Google Scholar 

  • Engelhardt I, Barth JAC, Bol R, Schulz M, Ternes TA, Schuth C, van Geldern R (2014) Quantification of long-term wastewater fluxes at the surface water/groundwater-interface: an integrative model perspective using stable isotopes and acesulfame. Sci Total Environ 466:16–25. doi:10.1016/j.scitotenv.2013.06.092

    Article  Google Scholar 

  • Frisvold GB, Konyar K (2012) Less water: how will agriculture in Southern Mountain states adapt. Water Resour Res 48:W05534. doi:10.1029/2011WR011057

    Article  Google Scholar 

  • Gilbert N (2010) Mountain mining damages streams. Nature 466(7308):806. doi:10.1038/466806a

    Article  Google Scholar 

  • Han YJ (1985) Heat-balance of a maritime glacier in Gongga mountains, and a discussion of imbalance. Ann Glaciol 6:322

    Article  Google Scholar 

  • He L, Tang Y (2008) Soil development along primary succession sequences on moraines of Hailuogou Glacier, Gongga Mountain, Sichuan, China. Catena 72(2):259–269. doi:10.1016/j.catena.2007.05.010

    Article  Google Scholar 

  • Heilweil VM, Solomon DK, Gingerich SB, Verstraeten IM (2009) Oxygen, hydrogen, and helium isotopes for investigating groundwater systems of the Cape Verde Islands, West Africa. Hydrogeol J 17(5):1157–1174. doi:10.1007/s10040-009-0434-2

    Article  Google Scholar 

  • Jin L, Siegel DI, Lautz LK, Lu ZL (2012) Identifying streamflow sources during spring snowmelt using water chemistry and isotopic composition in semi-arid mountain streams. J Hydrol 470–471:289–301. doi:10.1016/j.jhydrol.2012.09.009

    Article  Google Scholar 

  • Koeniger P, Hubbart JA, Link T, Marshall JD (2008) Isotopic variation of snow cover and streamflow in response to changes in canopy structure in a snow-dominated mountain catchment. Hydrol Process 22(4):557–566. doi:10.1002/hyp.6967

    Article  Google Scholar 

  • Lachniet MS, Patterson WP (2002) Stable isotope values of Costa Rican surface waters. J Hydrol 260(1):135–150. doi:10.1016/S0022-1694(01)00603-5

    Article  Google Scholar 

  • Langebroek PM, Werner M, Lohmann G (2011) Climate information imprinted in oxygen-isotopic composition of precipitation in Europe. Earth Planet Sci Lett 311(1–2):144–154. doi:10.1016/j.epsl.2011.08.049

    Article  Google Scholar 

  • Lin Y, Wang GX, Guo JY, Sun XY (2012) Quantifying evapotranspiration and its components in a coniferous subalpine forest in Southwest China. Hydrol Process 26(20):3032–3040. doi:10.1002/hyp.8321

    Article  Google Scholar 

  • Liu QA, Liu SY, Zhang Y, Wang X, Zhang YS, Guo WQ, Xu JL (2010) Recent shrinkage and hydrological response of Hailuogou glacier, a monsoon temperate glacier on the east slope of Mount Gongga, China. J Glaciol 56(196):215–224

    Article  Google Scholar 

  • Luce CH, Abatzoglou JT, Holden ZA (2013) The missing mountain water: slower westerlies decrease orographic enhancement in the pacific northwest USA. Science 342:1360–1364. doi:10.1126/science.1242335

    Article  Google Scholar 

  • Meng YC, Liu GD, Li MX (2015) Tracing the sources and processes of groundwater in an alpine glacierized region in southwest china: evidence from environmental isotopes. Water 7(6):2673–2690. doi:10.3390/w7062673

    Article  Google Scholar 

  • Merlivat L, Jouzel J (1979) Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. J Geophys Res 84(C8):5029–5033

    Article  Google Scholar 

  • Mills AD, Wiser RH (2014) Changes in the economic value of wind energy and flexible resources at increasing penetration levels in the Rocky Mountain Power Area. Wind Energy 17(11):1711–1726. doi:10.1002/we.1663

    Article  Google Scholar 

  • Nolin Anne W (2012) Perspectives on climate change, mountain hydrology, and water resources in the Oregon Cascades, USA. Mt Res Dev 32(S1):S35–S46. doi:10.1659/MRD-JOURNAL-D-11-00038.S1

    Article  Google Scholar 

  • Pearce AJ, Stewart MK, Sklash MG (1986) Storm runoff generation in humid headwater catchments: 1. Where does the water come from? Water Resour Res 22(8):1263–1272

    Article  Google Scholar 

  • Peng TR, Wang CH, Hsu SM, Chen NC, Su TW, Lee JF (2012) Use of stable water isotopes to assess sources and influences of slope groundwater on slope failure. Hydrol Process 26(3):345–355. doi:10.1002/hyp8130

    Article  Google Scholar 

  • Penna D, Engel M, Mao L, Dell’Agnese A, Bertoldi G, Comiti F (2014) Tracer-based analysis of spatial and temporal variations of water sources in a glacierized catchment. Hydrol Earth Syst Sci 18(12):5271–5288. doi:10.5194/hess-18-5271-2014

    Article  Google Scholar 

  • Rozanski K, Sonntag G, Munnich KO (1982) Factors controlling stable isotope composition of European precipitation. Tellus 34:142–150

    Google Scholar 

  • Shan BQ, Wang WD, Yin CQ (2004) Streamwater chemistry and flow dynamics along vegetation-soil gradient in a subalpine Abies fabri forest watershed, China. J Environ Sci China 16(5):722–729

    Google Scholar 

  • Simsek C, Elci A, Gunduz O, Erdogan B (2008) Hydrogeological and hydrogeochemical characterization of a karstic mountain region. Environ Geol 54(2):291–308. doi:10.1007/s00254-007-0817-4

    Article  Google Scholar 

  • Soulsby C, Malcolm R, Helliwell R, Ferrier RC, Jenkins A (2000) Isotope hydrology of the Allt a’ Mharcaidh catchment, Cairngorms, Scotland: implications for hydrological pathways and residence times. Hydrol Process 14(4):747–762. doi:10.1002/(SICI)1099-1085(200003)14:4<747:AID-HYP970>3.0.CO;2-0

    Article  Google Scholar 

  • Thomas A (1997) The climate of the Gongga Shan range, Sichuan Province, PR China. Arct Antarct Alp Res 29(2):226–232. doi:10.2307/1552051

    Article  Google Scholar 

  • Thomas A (1999) Overview of the geoecology of the Gongga Shan range, Sichuan province, China. Mt Res Dev 19(1):17–30. doi:10.2307/3674110

    Article  Google Scholar 

  • Turton DJ, Haan CT, Miller EL (1992) Subsurface flow responses of a small forested catchment in the ouachita mountains. Hydrol Process 6(1):111–125. doi:10.1002/hyp.3360060110

    Article  Google Scholar 

  • Tyler JJ, Leng MJ, Arrowsmith C (2007) Seasonality and the isotope hydrology of Lochnagar, a Scottish mountain lake: implications for palaeoclimate research. Holocene 17(6):717–727. doi:10.1177/0959683607080513

    Article  Google Scholar 

  • Viviroli D, Durr HH, Messerli B, Meybeck M, Weingartner R (2007) Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour Res 43(7):W07447. doi:10.1029/2006WR005653

    Article  Google Scholar 

  • Weingartner R, Viviroli D, Schadler B (2007) Water resources in mountain regions: a methodological approach to assess the water balance in a highland-lowland-system. Hydrol Process 21(5):578–585. doi:10.1002/hyp.6268

    Article  Google Scholar 

  • Whiteman D (2000) Mountain meteorology. Oxford University Press, London

    Google Scholar 

  • Yeh HF, Lee CH, Hsu KC (2011) Oxygen and hydrogen isotopes for the characteristics of groundwater recharge: a case study from the Chih-Pen Creek basin, Taiwan. Environ Earth Sci 62(2):393–402. doi:10.1007/s12665-010-0534-2

    Article  Google Scholar 

  • Yin LH, Hou GC, Su XS, Wang D, Dong JQ, Hao YH, Wang XY (2011) Isotopes (delta D and delta O-18) in precipitation, groundwater and surface water in the Ordos Plateau, China: implications with respect to groundwater recharge and circulation. Hydrogeol J 19(2):429–443. doi:10.1007/s10040-010-0671-4

    Article  Google Scholar 

  • Yu WS, Xu BQ, Lai CT, Ma YM, Tian LD, Qu DM, Zhu ZY (2014) Influences of relative humidity and Indian monsoon precipitation on leaf water stable isotopes from the southeastern Tibetan Plateau. Geophys Res Lett 41(21):7746–7753. doi:10.1002/2014GL062004

    Article  Google Scholar 

  • Yuan F, Miyamoto S (2008) Characteristics of oxygen-18 and deuterium composition in waters from the Pecos River in American Southwest. Chem Geol 255(1):220–230. doi:10.1016/j.chemgeo.2008.06.045

    Article  Google Scholar 

  • Zhang Y, Fujita K, Liu SY, Liu QA, Wang X (2010) Multi-decadal ice-velocity and elevation changes of a monsoonal maritime glacier: Hailuogou glacier, China. J Glaciol 56(195):65–74

    Article  Google Scholar 

  • Zhang GL, Pan BT, Cao B, Wang J, Cui H, Cao XL (2015) Elevation changes measured during 1966-2010 on the monsoonal temperate glaciers’ ablation region, Gongga Mountains, China. Quat Int 371:49–57. doi:10.1016/j.quaint.2015.03.055

    Article  Google Scholar 

  • Zhao HX, Moore GWK (2004) On the relationship between Tibetan snow cover, the Tibetan plateau monsoon and the Indian summer monsoon. Geophys Res Lett 31(14):L14204. doi:10.1029/2004GL020040

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the Gongga Mountain Alpine Ecosystem Station, Chengdu Institute of Mountain Hazard and Environment, the Chinese Academy of Sciences, Sichuan, China, for supplying necessary meteorological and hydrological data. Financial support from Youth Foundation of Sichuan University (Grant No. 2015SCU11048) and the Key Projects of Natural Science Foundation of China (Grant No. 40730634) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchuan Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Liu, G. Isotopic characteristics of precipitation, groundwater, and stream water in an alpine region in southwest China. Environ Earth Sci 75, 894 (2016). https://doi.org/10.1007/s12665-016-5697-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5697-z

Keywords

Navigation