Skip to main content

Advertisement

Log in

Parameterizability of processes in subsurface energy and mass storage

Supported by a review of processes, codes, parameters, and a regional example: Schleswig-Holstein, Germany

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The numerical simulation of scenarios is a promising approach when quantifying the potential hydraulic, thermal, geomechanical, and chemical effects of subsurface energy and mass storage. Particularly, the coupling of processes is a strong point in numerical simulations. This study defines the geoscientific parameter demand as well as the demand for process understanding for simulating subsurface energy and mass storage, describes the existing numerical codes to conduct the simulations, provides generally valid parameter values, and emphasizes on discussing parameters where only few values exist. In this context, it is exemplified that the parameterizability of the regarded processes is determined by an uncertainty in parameter values (variability or aleatory uncertainty) as well as in the understanding of processes (epistemic uncertainty) as it was suggested by Walker et al. (Integr Assess 4:5–17, 2003). The study categorizes the knowledge about parameter values and processes into these uncertainty groups and exemplarily evaluates the impacts of the uncertainties. Using this approach illustrates the concepts needed for calculating prediction errors of numerical scenario simulations, such as sensitivity analyses in the case of statistical data uncertainty and laboratory or field studies in the case of scenario uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abuel-Naga HM, Bergado DT, Bouazza A, Ramana GV (2007) Volume change behaviour of saturated clays under drained heating conditions: experimental results and constitutive modeling. Can Geotech J 44:942–956

    Article  Google Scholar 

  • Acharya RC, Valocchi AJ, Werth CJ, Willingham TW (2007) Pore-scale simulation of dispersion and reaction along a transverse mixing zone in two-dimensional porous media. Water Resour Res 43:W10435

    Article  Google Scholar 

  • Agemar T, Alten J-A, Ganz B, Kuder J, Kühne K, Schumacher S, Schulz R (2014) The Geothermal Information System for Germany (GeotIS). Z dtsch Ges Geowiss 165:129–144

    Google Scholar 

  • Allen R, Doherty T, Erikson R, Wiles L (1983) Factors affecting storage of compressed air in porous rock reservoirs. Pacific Northwest Laboratory, Technical Report PNL-4707

  • Anderson MP (2005) Heat as a ground water tracer. Ground Water 43:951–968

    Article  Google Scholar 

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. A.A. Balkema Publishers, Amsterdam

    Book  Google Scholar 

  • Arias F, Sen TK (2009) Removal of zinc metal ion (Zn2+) from its aqueous solution by kaolin clay mineral: a kinetic and equilibrium study. Colloids Surf A 348:100–108

    Article  Google Scholar 

  • Arning E, Kölling M, Panteleit B, Reichling J, Schulz HD (2006) Einfluss oberflächennaher Wärmegewinnung auf geochemische Prozesse im Grundwasserleiter. Grundwasser 1(2006):27–39

    Article  Google Scholar 

  • Audigane P, Gaus I, Czernichowski-Lauriol I, Pruess K, Xu T (2007) Two-dimensional reactive transport modelling of CO2 injection in a saline aquifer at the Sleipner site, North Sea. Am J Sci 307:974–1008

    Article  Google Scholar 

  • Baldi G, Hueckel T, Pellegrini R (1988) Thermal volume changes of mineral-water system in low-porosity clay soils. Can Geotech J 25:807–825

    Article  Google Scholar 

  • Ballarini E, Beyer C, Griebler C, Bauer RD, Bauer S (2014) Model based evaluation of a contaminant plume development under aerobic and anaerobic conditions in 2D bench-scale tank experiments. Biodegradation 25:351–371

    Article  Google Scholar 

  • Bauer S, Beyer C, Kolditz O (2006) Assessing measurement uncertainty of first-order degradation rates in heterogeneous aquifers. Water Resour Res 42:W01420

    Google Scholar 

  • Bauer S, Beyer C, Dethlefsen F, Dietrich P, Duttmann R, Ebert M, Feeser V, Görke U, Köber R, Kolditz O, Rabbel W, Schanz T, Schäfer D, Würdemann H, Dahmke A (2013) Impacts of the use of the geological subsurface for energy storage: an investigation concept. Environ Earth Sci 70:3935–3943

    Article  Google Scholar 

  • Bauer S, Pfeiffer W, Boockmeyer A, Dahmke A, Beyer C (2015) Quantifying induced effects of subsurface renewable energy storage. Energy Procedia 76:633–641

    Article  Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. Dover Publications, New York

    Google Scholar 

  • Bear J, Bachmat Y (1990) Introduction to modeling of transport phenomena in porous media. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Beckman KL, Determeyer PL, Mowrey EH (1995) Natural gas storage: historical development and expected evolution: December 1994–February 1995. Gas Research Institute, Houston

    Google Scholar 

  • Benisch K, Bauer S (2013) Short- and long-term regional pressure build-up during CO2 injection and its applicability for site monitoring. Int J Greenh Gas Control 19:220–233

    Article  Google Scholar 

  • Benisch K, Graupner B, Bauer S (2013) The coupled OpenGeoSys-Eclipse simulator for simulation of CO2 storage—code comparison for fluid flow and geomechanical processes. Energy Procedia 37:3663–3671

    Article  Google Scholar 

  • Benz SA, Bayer P, Menberg K, Jung S, Blum P (2015) Spatial resolution of anthropogenic heat fluxes into urban aquifers. Sci Total Environ 524–525:427–439

    Article  Google Scholar 

  • Berta M, Dethlefsen F, Ebert M, Dahmke A (submitted) Surface passivation model explains pyrite oxidation kinetics in column experiments with up to 11 bars p(O2). Environ Earth Sci (this issue)

  • Beyer C, Popp S, Bauer S (submitted) Simulation of temperature effects on groundwater flow, reactive contaminant dissolution, transport and biodegradation due to shallow geothermal use. Environ Earth Sci (this issue)

  • Beyer C, Li D, de Lucia M, Kühn M, Bauer S (2012) Modelling CO2-induced fluid-rock interactions in the Altensalzwedel gas reservoir. Part II: coupled reactive transport simulation. Environ Earth Sci 67:573–588

    Article  Google Scholar 

  • Birkholzer JT, Apps JA, Zheng L, Zhang Y, Xu T, Tsang C-F (2008) Water quality effects caused by CO2 intrusion into shallow grunondwater. Earth Science Division, Lawrence Berkley National Laboratory, Berkley

    Google Scholar 

  • Boley C (2012) Handbuch Geotechnik. Vieweg + Teubner Verlag, Heidelberg

    Book  Google Scholar 

  • Bons PD, van Milligen BP, Blum P (2013) A general unified expression for solute and heat dispersion in homogeneous porous media. Water Resour Res 49:6166–6178

    Article  Google Scholar 

  • Bonte M, Stuyfzand PJ, Hulsmann A, van Beelen P (2011) Underground Thermal Energy Storage: Environmental risks and policy developments in the Netherlands and European Union. Ecol Soc 16(1):22

    Article  Google Scholar 

  • Bonte M, Röling WF, Zaura E, van der Wielen PW, Stuyfzand PJ, van Breukelen BM (2013a) Impacts of shallow geothermal energy production on redox processes and microbial communities. Environ Sci Technol 47:14476–14484

    Article  Google Scholar 

  • Bonte M, van Breukelen BM, Stuyfzand PJ (2013b) Temperature-induced impacts on groundwater quality and arsenic mobility in anoxic aquifer sediments used for both drinking water production and shallow geothermal energy production. Water Res 47:5088–5100

    Article  Google Scholar 

  • Boockmeyer A, Bauer S (2014) High-temperature heat storage in geological media: high-resolution simulation of near-borehole processes. Geotech Lett 4:151–156

    Article  Google Scholar 

  • Boockmeyer A, Bauer S (submitted) Efficient simulation of multiple borehole heat exchanger storage sites. Environ Earth Sci (this issue)

  • Brielmann H, Lueders T, Schregelmann K, Ferraro F, Avramov M, Hammerl V, Blum P, Bayer P, Griebler C (2011) Oberflächennahe Geothermie und ihren potenziellen Auswirkungen auf Grundwasserökologie. Grundwasser 16:77–91

    Article  Google Scholar 

  • Brons HJ, Griffioen J, Appelo CAJ, Zehnder AJB (1991) (Bio)geochemical reactions in aquifer material from a thermal energy storage site. Water Res 25:729–736

    Article  Google Scholar 

  • Brooks R, Corey A (1964) Hydraulic properties of porous media. Colorado State University, Fort Collins

    Google Scholar 

  • Burghignoli A, Desideri A, Miliziano S (2000) A laboratory study on the thermomechanical behaviour of clayey soils. Can Geotech J 37:764–780

    Article  Google Scholar 

  • Cappa F, Rutqvist J (2011) Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2. Int J Greenh Gas Control 5:336–346

    Article  Google Scholar 

  • Cara M (1994) Geophysik. Springer, Heidelberg

    Book  Google Scholar 

  • Carroll S, Walther J (1990) Kaolinite dissolution at 25 °C, 60 °C, and 80 °C. Am J Sci 290:797–810

    Article  Google Scholar 

  • Cekerevac C, Laloui L (2004) Experimental study of thermal effects on the mechanical behaviour of a clay. Int J Numer Anal Methods 28:209–228

    Article  Google Scholar 

  • Chen Y, Brantley S (1997) Temperature- and pH-dependence of albite dissolution rate at acid pH. Chem Geol 135:275–290

    Article  Google Scholar 

  • Chen F, Freedman DL, Falta RW, Murdoch LC (2012) Henry’s law constants of chlorinated solvents at elevated temperatures. Chemosphere 86:156–165

    Article  Google Scholar 

  • Cirpka OA, Chiogna G, Rolle M, Bellin A (2015) Transverse mixing in three-dimensional nonstationary anisotropic heterogeneous porous media. Water Resour Res 51:241–260

    Article  Google Scholar 

  • Clauser C (2003) Numerical simulation of reactive flow in hot aquifers, SHEMAT and Processing SHEMAT. Springer, Berlin

    Book  Google Scholar 

  • Clauser C (2011a) Thermal storage and transport properties of rocks, I: Heat capacity and latent heat. In: Gupta HK (ed) Encyclopedia of solid earth geophysics, 2nd edn. Springer, Dordrecht, pp 1423–1431

    Chapter  Google Scholar 

  • Clauser C (2011b) Thermal storage and transport properties of rocks, II: Thermal conductivity and diffusivity. In: Gupta HK (ed) Encyclopedia of solid earth geophysics, 2nd edn. Springer, Dordrecht, pp 1431–1448

    Chapter  Google Scholar 

  • Clauser C (2014) Einführung in die Geophysik. Springer Spektrum Verlag, Heidelberg

    Book  Google Scholar 

  • Clayton CJ, Dando PR (1996) Comparison of seepage and seal leakage. In: Schumacher D, Abrams MA (eds). Hydrocarbon migration and its near-surface expression. AAPG Memoirs 66. pp 169–171

  • Crotogino F, Donadei S, Bünger U, Landinger H (2010) Large-scale hydrogen underground storage for securing future energy supplies. In: 18th World Hydrogen Energy Conference, Essen/Germany

  • Cui YJ, Sultan N, Delage P (2000) A thermomechanical model for saturated clays. Can Geotech J 37:607–620

    Article  Google Scholar 

  • Dando PR, O’Hara SCM, Schuster U, Taylor LJ, Clayton CJ, Baylis S, Laier T (1994) Gas seepage from a carbonate-cemented sandstone reef on the Kattegat coast of Denmark. Mar Petol Geol 11:182–189

    Article  Google Scholar 

  • Davis NS, de Wiest RJM (1966) Hydrogeology. Wiley, New York

    Google Scholar 

  • de Marsily G (1986) Quantitive hydrogeology. Academic Press, San Diego

    Google Scholar 

  • Delahaye CH, Alonso EE (1999) Modelling of gas migration in clay. In: VI Argentine Congress of Computational Mechanics, Mendoza, Argentina

  • Dethlefsen F, Nolde M, Schäfer D, Dahmke A (submitted) Basic parameterization of Schleswig–Holstein’s shallow geological formations for numerical reactive transport simulations based on existing data. Environ Earth Sci (this issue)

  • Dethlefsen F, Haase C, Ebert M, Dahmke A (2012) Uncertainties of geochemical modeling during CO2 sequestration applying batch equilibrium calculations. Environ Earth Sci 65:1105–1117

    Article  Google Scholar 

  • Dethlefsen F, Köber R, Schäfer D, al Hagrey SA, Hornbruch G, Ebert M, Beyer M, Großmann J, Dahmke A (2013) Monitoring approaches for detecting and evaluating CO2 and formation water leakages into near-surface aquifers. Energy Procedia 37:4886–4893

    Article  Google Scholar 

  • Dethlefsen F, Ebert M, Dahmke A (2014a) A geological database for parameterization in numerical modeling of subsurface storage in Northern Germany. Environ Earth Sci 71:2227–2244

    Article  Google Scholar 

  • Dethlefsen F, Peter A, Hornbruch G, Lamert H, Garbe-Schönberg D, Beyer M, Dietrich P, Dahmke A (2014b) Hydrogeochemical alteration of groundwater due to a CO2 injection test into a shallow aquifer in Northeast Germany. European Geosciences Union General Assembly, Vienna

    Google Scholar 

  • Dethlefsen F, Bauer S, Dahmke A (2015) Current status and further needs in parameterization for an underground land use planning. In: The Third Sustainable Earth Science Conference & Exhibition. EarthDoc, Celle, Germany

  • Diersch H-JG (2014) FEFLOW Finite element modeling of flow, mass and heat transport in porous and fractured media. Springer, Berlin

    Google Scholar 

  • Diersch HJG, Kolditz O (1998) Coupled groundwater flow and transport: 2. Thermohaline and 3D convection systems. Adv Water Resour 21:401–425

    Article  Google Scholar 

  • Diersch HJG, Kolditz O (2002) Variable-density flow and transport in porous media: approaches and challenges. Adv Water Resour 25:899–944

    Article  Google Scholar 

  • Diersch H-JG, Bauer D, Heidemann W, Rühaak W, Schätzl P (2011) Finite element modeling of borehole heat exchanger systems Part 1. Fundam Comput Geosci 37:1122–1135

    Article  Google Scholar 

  • DIN 38402-13 (1985-12) German standard methods for the examination of water, waste water and sludge; general information (group A); sampling from aquifers (A 13)

  • Doornenbal JC, Stevenson AG (2010) Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications b.v., Houten

    Google Scholar 

  • Doughty C, Freifeld BM (2013) Modeling CO2 injection at Cranfield, Mississippi: investigation of methane and temperature effects. Greenh Gases Sci Technol 3:475–490

    Article  Google Scholar 

  • Duan Z, Li D (2008) Coupled phase and aqueous species equilibrium of the H2O–CO2–NaCl–CaCO3 system from 0 to 250°C, 1 to 1000 bar with NaCl concentrations up to saturation of halite. Geochim Cosmochim Acta 72:5128–5145

    Article  Google Scholar 

  • Duan Z, Hu J, Li D, Mao S (2008) Densities of the CO2–H2O and CO2–H2O–NaCl systems up to 647 K and 100 MPa. Energy Fuel 22:1666–1674

    Article  Google Scholar 

  • DVWK (1992) Entnahme und Untersuchungsumfang von Grundwasserproben. Merkblatt zur Wasserwirtschaft DVWK 128

  • DVWK (1997) Tiefenorientierte Probenahme aus Grundwassermessstellen. Merkblätter zur Wasserwirtschaft DVWK 245

  • Engel J, Lauer C (2010) Einführung in die Boden- und Felsmechanik. Carl Hanser Verlag, München

    Book  Google Scholar 

  • Eriksson G, Konigsberger E (2008) FactSage and ChemApp. Two tools for the prediction of multiphase chemical equilibria in solutions. Pure Appl Chem 80:1293–1302

    Article  Google Scholar 

  • Esposito A, Benson SM (2012) Evaluation and development of options for remediation of CO2 leakage into groundwater aquifers from geologic carbon storage. Int J Greenh Gas Control 7:62–73

    Article  Google Scholar 

  • Evanko CR, Dzombak DA (1998) Influence of structural features on sorption of NOM-analogue organic acids to geothite. Environ Sci Technol 32:2846–2855

    Article  Google Scholar 

  • Evans DJ (2008) An appraisal of underground gas storage technologies and incidents for the development of risk assessment methodology. Nottingham, British Geological Survey

    Google Scholar 

  • Filius JD, Lumsdon DG, Meeussen JCL, Hiemstra T, van Riemsdijk WH (2000) Adsorption of fulvic acids on geothite. Geochim Cosmochim Acta 64:51–60

    Article  Google Scholar 

  • Finsterle S, Sonnenthal EL, Spycher N (2014) Advances in subsurface modeling using the TOUGH suite of simulators. Comput Geosci 65:2–12

    Article  Google Scholar 

  • Fischer C, Arvidson RS, Lüttge A (2012) How predictable are dissolution rates of crystalline material? Geochim Cosmochim Acta 98:177–185

    Article  Google Scholar 

  • Fournier RO (1977) Chemical geothermometers and mixing models for geothermal systems. Geothermics 5:41–50

    Article  Google Scholar 

  • Francke H, Thorade M (2010) Density and viscosity of brine: an overview from a process engineers perspective. Chem Erde-Geochem 70(Suppl. 3):23–32

    Article  Google Scholar 

  • Franklin J, Dusseault M (1989) Rock Engineering. McGraw-Hill Publishing Company, New York

    Google Scholar 

  • Freyberg DL (1986) A natural gradient experiment on solute transport in a sand aquifer. 2. Spatial moments and the advection and dispersion of nonreactive tracers. Water Resour Res 22:2031–2046

    Article  Google Scholar 

  • Friis AK, Heimann AC, Jakobsen R, Albrechtsen HJ, Cox E, Bjerg PL (2007) Temperature dependence of anaerobic TCE-dechlorination in a highly enriched Dehalococcoides-containing culture. Water Res 41:355–364

    Article  Google Scholar 

  • Fujii H, Itoi R, Fujii J, Uchida Y (2005) Optimizing the design of large-scale ground-coupled heat pump systems using groundwater and heat transport modeling. Geothermics 34:347–364

    Article  Google Scholar 

  • Garabedian SP, LeBlanc DR, Gelhar LW, Celia MA (1991) Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts: 2. Analysis of spatial moments for a nonreactive tracer. Water Resour Res 27:911–924

    Article  Google Scholar 

  • Garbe-Schönberg D (1993) Simultaneous determination of thirty-seven trace elements in twenty-eight international rock standards by ICP-MS. Geostand Newslett 17:81–97

    Article  Google Scholar 

  • Gaupp R (1991) Zur Fazies und Diagenese des Mittelrhät-Sandsteins im Gasfeld Thönse. Veröffentlichungen der Niedersächsischen Akademie der Geowissenschaften 6:34–55

    Google Scholar 

  • Gaus I, Audigane P, André L, Lions J, Jacquemet N, Durst P, Czernichowski-Lauriol I, Azaroual M (2008) Geochemical and solute transport modelling for CO2 storage, what to expect from it? Int J Greenh Gas Control 2:605–625

    Article  Google Scholar 

  • Goldschagg B (2014) Rekonstruktion der in situ Zusammensetzung und Temperatur norddeutscher Tiefenwässer. MSc Thesis, Institute of Geosciences-Christian-Albrechts-University Kiel

  • Graham J, Tanaka N, Crilly T, Alfaro M (2001) Modified Cam-Clay modeling of temperature effects in clays. Can Geotech J 38:608–621

    Article  Google Scholar 

  • Grandel S, Dahmke A (2004) Monitored Natural Attenuation of chlorinated solvents: assessment of potential and limitations. Biodegradation 15:371–386

    Article  Google Scholar 

  • Grathwohl P (1997) Gefährdung des Grundwassers durch Freisetzung organischer Schadstoffe: Methoden zur Berechnung der in situ-Schadstoffkonzentrationen. Grundwasser 4(97):157–166

    Article  Google Scholar 

  • Graupner B, Li D, Bauer S (2011) The coupled simulator ECLIPSE–OpenGeoSys for the simulation of CO2 storage in saline formations. Energy Procedia 4:3794–3800

    Article  Google Scholar 

  • Griebler C, Kellermann C, Stumpp C, Hegler F, Kuntz D, Walker-Hertkorn S (2015) Auswirkungen thermischer Veränderungen infolge der Nutzung oberflächennaher Geothermie auf die Beschaffenheit des Grundwassers und seiner Lebensgemeinschaften—Empfehlungen für eine umweltverträgliche Nutzung. Dessau-Rosslau, Umweltbundesamt

    Google Scholar 

  • Gudehus G (1981) Bodenmechanik. Ferdinand Enke Verlag, Stuttgart

    Google Scholar 

  • Gunter WD, Perkins EH, McCann TJ (1993) Aquifer disposal of CO2-rich gases: reaction design for added capacity. Energy Convers Manag 34:941–948

    Article  Google Scholar 

  • Haase C, Dethlefsen F, Ebert M, Dahmke A (2013) Uncertainty in geochemical modelling of CO2 and calcite dissolution in NaCl solutions due to different modelling codes and thermodynamic databases. Appl Geochem 33:306–317

    Article  Google Scholar 

  • Haase C, Dahmke A, Ebert M, Schäfer D, Dethlefsen F (2014) Suitability of existing numerical model codes and thermodynamic databases for the prognosis of calcite dissolution processes in near-surface sediments due to a CO2 leakage investigated by column experiments. Aquat Geochem 20:639–661

    Article  Google Scholar 

  • Haase C, Ebert M, Dethlefsen F (2016) Uncertainties of geochemical codes and thermodynamic databases for predicting the impact of carbon dioxide on geologic formations. Appl Geochem 67:81–92

    Article  Google Scholar 

  • Hähnlein S, Molina-Giraldo N, Blum P, Bayer P, Grathwohl P (2010) Ausbreitung von Kältefahnen im Grundwasser bei Erdwärmesonden. Grundwasser 15:123–133

    Article  Google Scholar 

  • Hähnlein S, Bayer P, Ferguson G, Blum P (2013) Sustainability and policy for the thermal use of shallow geothermal energy. Energy Policy 59:914–925

    Article  Google Scholar 

  • Hamidi AH, Tourchi S, Khazaei C (2015) Thermomechanical constitutive model for saturated clays based on critical state theory. Int J Geomech 15(1):04014038

    Article  Google Scholar 

  • Hammond G, Lichtner P (2010) Field-scale model for the natural attenuation of uranium at the Hanford 300 area using high-performance computing. Water Resour Res 46:W09527

    Article  Google Scholar 

  • Hammond G, Lichtner P, Lu C, Mills R (2011) PFLOTRAN: Reactive Flow Transport Code for use on laptops to leadership-class supercomputers. In: Zhang F, Yeh G, Parker J (eds) Ground water reactive transport models. Bentham Science Publishers, Emirate of Sharjah

    Google Scholar 

  • Hecht-Méndez J, de Paly M, Beck M, Bayer P (2013) Optimization of energy extraction for vertical closed-loop geothermal systems considering groundwater flow. Energy Convers Manag 66:1–10

    Article  Google Scholar 

  • Hess KM, Wolf SH, Celia MA (1992) Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts. 3. Hydraulic conductivity variability and calculated macrodispersivities. Water Resour Res 28:2011–2027

    Article  Google Scholar 

  • Hildenbrand A, Schlömer S, Krooss BM (2002) Gas breakthrough experiments on fine-grained sedimentary rocks. Geofluids 2:3–23

    Article  Google Scholar 

  • Hildenbrand A, Schlömer S, Krooss BM, Littke R (2004) Gas breakthrough experiments on pelitic rocks: comparative study with N2, CO2 and CH4. Geofluids 4:61–80

    Article  Google Scholar 

  • Hölting B (1995) Hydrogeologie. Enke Verlag, Wiesbaden/Mainz

    Google Scholar 

  • Hopmans JW, Simunek J, Bristow KL (2002) Indirect estimation of soil thermal properties and water flux using heat pulse probe measurements: geometry and dispersion effects. Water Resour Res 38:7-1–7-14

    Article  Google Scholar 

  • Horning E-D (2007) Spannungs-Verformungsverhalten von wechselfestem Gestein. Institut für Geotechnik der TU Freiberg

  • Hoth P, Seibt A, Kellner T, Huenges E (1997) Geowissenschaftliche Bewertungsgrundlagen zur Nutzung hydrothermaler Ressourcen in Norddeutschland. Geoforschungszentrum Potsdam

  • Hou MZ, Kracke T, Gou Y, Lou X, Xing W (2014) Konzepte zur Berechnung der mikroseismischen Aktivität bei der energetischen Nutzung geothermischer Systeme im tiefen Untergrund—Einzelprojekt 6: THM:C gekoppelte Untersuchungen zu Mechanismen und freigesetzten Deformationsenergien der seismischen Ereignisse in der Reservoirsimulations- und Betriebsphase. Energie-Forschungszentrum Niedersachsen (EFZN), Technische Universität Clausthal, Golsar

  • Hovland FT, Summerville JH (1985) Characteristics of two natural gas seepages in the North Sea. Mar Petol Geol 2:319–326

    Article  Google Scholar 

  • Howard DM, Howard PJA (1993) Relationships between CO2 evolution, moisture content and temperature for a range of soil types. Soil Biol Biochem 25:1537–1546

    Article  Google Scholar 

  • Hueckel T, Baldi G (1990) Thermoplasticity of saturated clays: experimental constitutive study. J Geotech Eng 116:1778–1796

    Article  Google Scholar 

  • Hueckel T, Borsetto M (1990) Thermoplasticity of saturated soils and shales: constitutive equations. J Geotech Eng 116:1765–1777

    Article  Google Scholar 

  • Hueckel T, Peano A, Pellegrini R (1994a) A constitutive law for thermo-plastic behaviour of rocks: an analogy with clays. Surv Geophys 15:643–671

    Article  Google Scholar 

  • Hueckel T, Peano A, Pellegrini R (1994b) A thermo-plastic constitutive law for brittle-plastic behaviour of rocks at high temperatures. Pure Appl Geophys 143:483–511

    Article  Google Scholar 

  • Istok JD, Park MM, Peacock AD, Oostrom M, Wietsma TW (2007) An experimental investigation of nitrogen gas produced during denitrification. Ground Water 45:461–467

    Article  Google Scholar 

  • Itasca (2006) FLAC3D, Fast Lagrangian analysis of continua in 3 dimensions, 3.0th edn. Itasca Consulting Group, Minneapolis

    Google Scholar 

  • Jesußek A (2012) Temperaturbedingte Auswirkungen unterirdischer Wärmespeicherung auf hydrogeochemische Sediment-Wasser-Wechselwirkungen in einem oberflächennahen Grundwasserleiter. Ph.D. Thesis, Faculty of Mathematics and Natural Sciences—Christian-Albrechts-University Kiel

  • Jesußek A, Grandel S, Dahmke A (2013a) Impacts of subsurface heat storage on aquifer hydrogeochemistry. Environ Earth Sci 69:1999–2012

    Article  Google Scholar 

  • Jesußek A, Köber R, Grandel S, Dahmke A (2013b) Aquifer heat storage: sulphate reduction with acetate at increased temperatures. Environ Earth Sci 69:1763–1771

    Article  Google Scholar 

  • Jiménez S, Brauchler R, Hu R, Hu L, Schmidt S, Ptak T, Bayer P (2015) Prediction of solute transport in a heterogeneous aquifer utilizing hydraulic conductivity and specific storage tomograms. Water Resour Res 51:5504–5520

    Article  Google Scholar 

  • Kersten M, Vlasova N (2009) Arsenite adsorption on goethite at elevated temperatures. Appl Geochem 24:32–43

    Article  Google Scholar 

  • Kettel D (1996) A method for processing adsorbed methane stable isotope data from near surface based fractionation. In: Schumacher D, Abrams MA (eds). Hydrocarbon migration and its near-surface expression. AAPG Memoir 66. pp 319-336

  • Kim J, Sonnenthal E, Rutqvist J (2015) A sequential implicit algorithm of chemo-thermo-poro-mechanics for fractured geothermal reservoirs. Comput Geosci 76:59–71

    Article  Google Scholar 

  • Klingler P (2010) Charakterisierung des geothermischen Reservoirs Riehen: 3D Struktur und Tracer-Test. CHYN-Zentrum für Hydrogeologie. Universität Neuenburg, Neuchâtel

    Google Scholar 

  • Knauss KG, Dibley MJ, Roald LN, Mew DA, Aines RD (2000) The aqueous solubility of trichloroethe (TCE) and tetrachloroethene (PCE) as a function of temperature. Appl Geochem 15:501–515

    Article  Google Scholar 

  • Kobranova VN (1989) Petrophysics. Springer, Heidelberg

    Google Scholar 

  • Kolditz O, Bauer S, Bilke L, Böttcher N, Delfs JO, Fischer T, Görke UJ, Kalbacher T, Kosakowski G, McDermott CI, Park CH, Radu F, Rink K, Shao H, Shao HB, Sun F, Sun YY, Singh AK, Taron J, Walther M, Wang W, Watanabe N, Wu Y, Xie M, Xu W, Zehner B (2012) OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ Earth Sci 67:589–599

    Article  Google Scholar 

  • Kolymbas D (1999) Introduction to hypoplasticity. Advances in geotechnical engineering and tunneling. Balkema, Rotterdam

    Google Scholar 

  • Kolymbas D (2012) Barodesy: a new hypoplastic approach. Int J Numer Anal Methods 36:1220–1240

    Article  Google Scholar 

  • Koproch N, Köber R, Dahmke A (2015) Quantification of temperature impacts on the dissolution of chlorinated hydrocarbons into groundwater. GeoBerlin, Berlin

    Google Scholar 

  • Krayer von Krauss MP, Casman EA, Small MJ (2004) Elicitation of expert judgments of uncertainty in the risk assessment of herbicide-tolerant oilseed crops. Risk Anal 24:1515–1527

    Article  Google Scholar 

  • Kudla W (2012) ELSA Teil 1: Randbedingungen und Anforderungen bei Schächten für Endlager für hochradioaktive Abfälle. FZKA-PTE Endlagerforschung und nukleare Sicherheitsforschung

  • Kunkel R, Voigt H-J, Wendland F, Hannappel S (2004) Die natürliche, ubiquitär überprägte Grundwasserbeschaffenheit in Deutschland. Forschungszentrum Jülich, HYDOR Consult GmbH Berlin, Brandenburgusch-Technische Universität Cottbus

  • Laloui L, Cekerevac C (2003) Thermo-plasticity of clays: an isotropic yield mechanism. Comput Geotech 30:649–660

    Article  Google Scholar 

  • Laloui L, François B (2009) ACMEG-T: soil thermo plasticity model. J Eng Mech 135:932–944

    Article  Google Scholar 

  • Lanru J, Xianting F (2003) Numerical modeling for coupled thermo-hydro-mechanical and chemical processes (THMC) of geological media—international and Chinese experiences. Chin J Rock Mech Eng 22:1704–1715

    Google Scholar 

  • Lasaga AC (1984) Chemical kinetics of water–rock interactions. J Geophys Res 89:4009–4025

    Article  Google Scholar 

  • Leachman JW, Jacobsen RT, Penoncello SG, Lemmon EW (2009) Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen. J Phys Chem Ref Data 38:721–748

    Article  Google Scholar 

  • Lemppenau B (2015) Parametrisierung der Stratigraphie hinsichtlich des geomechanischen Bodenverhaltens als Basis für die Simulation von Energiespeicherszenarien im Bereich des Norddeutschen Beckens. Lehrstuhl für Grundbau, Boden- und Felsmechanik—Ruhr-Universität Bochum, unpublished

  • Li D, Bauer S, Benisch K, Graupner B, Beyer C (2014) OpenGeoSys-ChemApp: a coupled simulator for reactive transport in multiphase systems and application to CO2 storage formation in Northern Germany. Acta Geotech 9:67–79

    Article  Google Scholar 

  • Lide DR (2005) CFC handbook of chemistry and physics, 85th edn. Taylor & Francis, Boca Raton

    Google Scholar 

  • Liu EL, Xing HL (2009) A double hardening thermo-mechanical model for overconsolidated clays. Acta Geotech 4:1–6

    Article  Google Scholar 

  • Lovley DR, Chapelle FH, Woodward JC (1994) Use of dissolved H2 concentrations to determine distribution of microbially catalyzed redox reactions in anoxic groundwater. Environ Sci Technol 28:1205–1210

    Article  Google Scholar 

  • Lüders K, Köber R, Firmbach L, Dietrich P, Ebert M, Dahmke A (submitted) Gas phase formation during thermal energy storage in near surface aquifers—experimental and modelling results. Environ Earth Sci (this issue)

  • Mangold D, Schmidt T (2006) Saisonale Wärmespeicher: Neue Pilotanlagen im Programm Solarthermie2000plus und Forschungsperspektiven. Statusseminar Thermische Energiespeicher, Freiburg

    Google Scholar 

  • Martens S, Liebscher A, Möller F, Würdemann H, Schilling F, Kühn M (2011) Progress report on the first European on-shore CO2 storage site at Ketzin (Germany)—second year of injection. Energy Procedia 4:3246–3253

    Article  Google Scholar 

  • McCann T (1998) Sandstone composition and provenance of the Rotliegend of the NE German Basin. Sediment Geol 116:177–198

    Article  Google Scholar 

  • Meckenstock RU, Elsner M, Griebler C, Lueders T, Stumpp C, Aamand J, Agathos SN, Albrechtsen H-J, Bastiaens L, Bjerg PL, Boon N, Dejonghe W, Huang WE, Schmidt SI, Smolders E, Sørensen SR, Springael D, van Breukelen BM (2015) Biodegradation: updating the concepts of control for microbial cleanup in contaminated aquifers. Environ Sci Technol 49:7073–7081

    Article  Google Scholar 

  • MELUR (2015) Energiewende Schleswig-Holstein. Ministerium für Energiewende, Landwirtschaft, Umwelt und Ländliche Räume Schleswig-Holstein

  • Menberg K, Bayer P, Zosseder K, Rumohr S, Blum P (2013) Subsurface urban heat islands in German cities. Sci Total Environ 442:123–133

    Article  Google Scholar 

  • Michaelis L, Menten ML (1913) Die Kinetik der Invertinwirkung. Biochem Ze 49:334–369

    Google Scholar 

  • Mitchell JK (1964) Shearing resistance of soils as a rate process. J Soil Mech Found Div 90:29–61

    Google Scholar 

  • Mitrakas MG, Panteliadis PC, Keramidas VZ, Tzimou-Tsitouridou RD, Sikalisis CA (2009) Predicting Fe3+ dose for As (V) removal at pHs and temperatures commonly encountered in natural waters. Chem Eng J 155:716–721

    Article  Google Scholar 

  • Modaressi H, Laloui L (1997) A thermo-viscoplastic constitutive model for clays. Int J Numer Anal Methods 21:313–335

    Article  Google Scholar 

  • Molina-Giraldo N, Bayer P, Blum P (2011) Evaluating the influence of thermal dispersion on temperature plumes from geothermal systems using analytical solutions. Int J Therm Sci 50:1223–1231

    Article  Google Scholar 

  • Moltyaner GL, Killey RWD (1988a) Twin Lake tracer test—transverse dispersion. Water Resour Res 24:1628–1637

    Article  Google Scholar 

  • Moltyaner GL, Killey RWD (1988b) Twin Lake tracer tests—longitudinal dispersion. Water Resour Res 24:1613–1627

    Article  Google Scholar 

  • Monod J (1949) The growth of bacterial cultures. Ann Rev Microbiol 3:371–394

    Article  Google Scholar 

  • Mualem Y (1976) A new model for predicting the conductivity of unsaturated porous media. Water Resour Res 12:513–522

    Article  Google Scholar 

  • Müller EP, Papendieck G (1975) Zur Verteilung, Genese und Dynamik von Tiefenwässern unter besonderer Berücksichtigung des Zechsteins. Z Geol Wiss 3:167–196

    Google Scholar 

  • NAGRA (2002) Nagra—Technischer Bericht 02-03: Projekt Opalinuston. Projektträger Karlsruhe—Wassertechnologie und Entsorgung (PTKA-WTE)

  • Navarre-Sitchler A, Maxwell R, Siirila E, Hammond G, Lichtner P (2013) Elucidating geochemical response of shallow heterogeneous aquifers to CO2 leakage using high-performance computing: implications for monitoring of CO2 sequestration. Adv Water Resour 53:45–55

    Article  Google Scholar 

  • Nelson DL, Cox MM (2000) Lehninger Principles of Biochemistry. Worth Publishers, New York

    Google Scholar 

  • Nolde M, Biniyaz E, Dethlefsen F, Schwanebeck M, Duttmann R (2015) Development of a 3D online planning tool for the evaluation of potential underground energy storage areas. In: The Third Sustainable Earth Science Conference & Exhibition. EarthDoc, Celle, Germany

  • Nolde M, Schwanebeck M, Dethlefsen F, Duttmann R (submitted) Utilization of a 3D webGIS to support spatial planning regarding underground energy storage in the context of the German energy transition plan in Schleswig-Holstein. Environ Earth Sci (this issue)

  • Norden B, Förster A, Vu-Hoang D, Marcelis F, Springer N, Le Nir I (2010) Lithological and petrophysical core-log interpretation in CO2SINK, the European CO2 onshore research storage and verification project. Society of Petroleum Engineers

  • Norton JP, Brown JD, Mysiak J (2006) To what extent, and how, might uncertainty be defined? Comments engendered by “Defining uncertainty: a conceptual basis for uncertainty management in model-based decision support”: Walker et al., Integrated Assessment 4: 1, 2003. Integr Assess 6:83–88

    Google Scholar 

  • Oladyshkin S, Class H, Helmig R, Nowak W (2011a) A concept for data-driven uncertainty quantification and its application to carbon dioxide storage in geological formations. Adv Water Resour 34:1508–1518

    Article  Google Scholar 

  • Oladyshkin S, Class H, Helmig R, Nowak W (2011b) An integrative approach to robust design and probabilistic risk assessment for CO2 storage in geological formations. Comput Geosci 15:565–577

    Article  Google Scholar 

  • Otto R (2012) Zur Abschätzung von Wärmeleitfähigkeiten der oberflächennahen Lockergesteinsfolge in Norddeutschland. Grundwasser 17:219–229

    Article  Google Scholar 

  • Pacheco FAL, Landim PMB (2005) Two-way regionalized classification of multivariate datasets and its application to the assessment of hydrodynamic dispersion. Math Geol 37:393–417

    Article  Google Scholar 

  • Palandri JL, Kharaka YK (2004) A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Menlo Park, CA, USA

    Google Scholar 

  • Panfilov M (2010) Underground storage of hydrogen: in situ self-organisation and methane generation. Transp Porous Media 85:841–865

    Article  Google Scholar 

  • Pang Z-H, Reed M (1998) Theoretical chemical thermometry on geothermal waters: problems and methods. Geochim Cosmochim Acta 62:1083–1091

    Article  Google Scholar 

  • Park C-H, Böttcher N, Wang W, Kolditz O (2011) Are upwind techniques in multi-phase flow models necessary? J Comput Phys 9(2011):8304–8312

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) PHREEQC (Version 2). DOE, Denver CO

    Google Scholar 

  • Peng D-Y, Robinson DB (1976) A new two-constant equation of state. Ing Eng Chem Fundam 15:59–64

    Article  Google Scholar 

  • Pfeiffer WT (2012) Einfluss von kleinskaligen geologischen Strukturen auf die Phasenausbreitung von CO2 in tiefen salinaren Formationen. M.Sc. Thesis, Institute of Geosciences—Christian-Albrechts-University Kiel

  • Pfeiffer WT, Bauer S (2015) Subsurface porous media hydrogen storage—scenario development and simulation. Energy Procedia 76:565–572

    Article  Google Scholar 

  • Popp S, Beyer C, Dahmke A, Bauer S (2015a) Model development and numerical simulation of a seasonal heat storage in a contaminated shallow aquifer. Energy Procedia 76:361–370

    Article  Google Scholar 

  • Popp S, Beyer C, Koproch N, Köber R, Dahmke A, Bauer S (2015b) Untersuchung der Auswirkung unterirdischer Wärmespeicherung auf eine TCE-Grundwasserkontamination durch numerische Szenariensimulationen. bbr 03/2015:54-61

  • Popp S, Beyer C, Dahmke A, Koproch N, Köber R, Bauer S (submitted) Temperature dependent dissolution of residual non-aqueous phase liquids—model development and verification. Environ Earth Sci (this issue)

  • Prinz H, Strauß R (2006) Abriss der Ingenieurgeologie. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Pruess K, Nordbotten J (2011) Numerical simulation studies of the long-term evolution of a CO2 plume in a saline aquifer with a sloping caprock. Transp Porous Media 90:135–151

    Article  Google Scholar 

  • Pruess K, Oldenburg C, Moridis G (1999) TOUGH2 user's guide, ver 2.0. Earth sciences division, Lawrence Berkeley National Laboratory, University of California, Berkeley, USA, p 210

  • Rehfeldt KR, Boggs JM, Gelhar LW (1992) Field-study of dispersion in a heterogeneous aquifer. 3. Geostatistical analysis of hydraulic conductivity. Water Resour Res 28:3309–3324

    Article  Google Scholar 

  • Riva M, Guadagnini L, Guadagnini A, Ptak T, Martac E (2006) Probabilistic study of well capture zones distribution at the Lauswiesen field site. J Contam Hydrol 88:92–118

    Article  Google Scholar 

  • Riva M, Guadagnini A, Fernandez-Garcia D, Sanchez-Vila X, Ptak T (2008) Relative importance of geostatistical and transport models in describing heavily tailed breakthrough curves at the Lauswiesen site. J Contam Hydrol 101:1–13

    Article  Google Scholar 

  • Robinet J-C, Rahbaou A, Plas F, Lebon P (1996) A constitutive thermomechanical model for saturated clays. Eng Geol 41:145–169

    Article  Google Scholar 

  • Rolle M, Muniruzzaman M, Haberer CM, Grathwohl P (2013) Coulombic effects in advection-dominated transport of electrolytes in porous media: multicomponent ionic dispersion. Geochim Cosmochim Acta 120:195–205

    Article  Google Scholar 

  • Rutqvist J, Wu Y-S, Tsang C-F, Bodvarsson G (2002) A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. Int J Rock Mech Min Sci 39:429–442

    Article  Google Scholar 

  • Rutqvist J, Vasco DW, Myer L (2010) Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In Salah, Algeria. Int J Greenh Gas Control 4:225–230

    Article  Google Scholar 

  • Sauty JP, Gringarten AC, Fabris H, Thiery D, Menjoz A, Landel PA (1982) Sensible energy storage in aquifers—2. Field experiments and comparison with theoretical results. Water Resour Res 18:253–265

    Article  Google Scholar 

  • Schäfer D, Schlenz B, Dahmke A (2004) Evaluation of exploration and monitoring methods for verification of natural attenuation using the virtual aquifer approach. Biodegradation 15:453–465

    Article  Google Scholar 

  • Scheidegger A (1974) The physics of flow through porous media, 3rd edn. University of Toronto Press, Toronto

    Google Scholar 

  • Schlumberger (2010) VISAGE. 2010 edn

  • Schlumberger (2011) ECLIPSE Reservoir Engineering Software. 2011.3 edn

  • Schön J (1983) Petrophysik: physikalische Eigenschaften von Gesteinen und Mineralen. Ferdinand Enke Verlag, Stuttgart

    Google Scholar 

  • Singh AK, Görke U-J, Kolditz O (2011) Numerical simulation of non-isothermal compositional gas flow: application to carbon dioxide injection into gas reservoirs. Energy 36:3446–3458

    Article  Google Scholar 

  • Smigai P, Greksak M, Kozankova J, Buzek F, Onderka V, Wolf I (1990) Methanogenic bacteria as a key factor involved in changes of town gas in an underground reservoir. FEMS Microbiol Ecol 73:221–224

    Article  Google Scholar 

  • Steefel CI, Appelo CAJ, Arora B, Jacques D, Kalbacher T, Kolditz O, Lagneau V, Lichtner PC, Mayer KU, Meeussen JCL, Molins S, Moulton D, Shao H, Simunek J, Spycher N, Yabusaki SB, Yeh GT (2015) Reactive transport codes for subsurface environmental simulation. Comput Geosci 19:445–478

    Article  Google Scholar 

  • Sterner M, Stadler I (2014) Energiespeicher: Bedarf, Technologien, Integration. Springer, Heidelberg

    Google Scholar 

  • Stöckert F, Brenne S, Molenda M, Bartmann K, Hoenig S, Alber M (2013) Geomechanische Charackterisierung von Vulkaniten und Sedimenten des Rotliegenden im Norddeutschen Becken für die Optimierung des Aufschlusses geothermischer Lagerstätten. 19 Tagung für Ingenieurgeologie mit Forum für junge Ingenieurgeologen, München

  • Struder JA, Koller MG (1997) Bodendynamik. Springer, Heidelberg

    Book  Google Scholar 

  • Struß J (2015) Statistische Untersuchung der Hydrochemie norddeutscher Tiefenwässer. M.Sc. Thesis, Institute of Geosciences—Christian-Albrechts-University Kiel

  • Sudicky EA (1986) A natural gradient experiment on solute transport in a sand aquifer—spatial variability of hydraulic conductivity and its role in the dispersion process. Water Resour Res 22:2069–2082

    Article  Google Scholar 

  • Sultan N, Delange P, Cui YJ (2002) Temperature effects on the volume change behaviour of Boom clay. Eng Geol 64:135–145

    Article  Google Scholar 

  • Taron J, Elsworth D, Min K-B (2009) Numerical simulation of thermal-hydrologic-mechanical-chemical processes in deformable, fractured porous media. Int J Rock Mech Min 46:842–854

    Article  Google Scholar 

  • Teng HH, Dove PM, De YJJ (2000) Kinetics of calcite growth: surface processes and relationship to macroscopic rate laws. Geochim Cosmochim Acta 64:2255–2266

    Article  Google Scholar 

  • Tenthorey E, Vidal-Gilbert S, Backé G, Puspitasari R, Pallikathekathil ZJ, Maney B, Dewhurst D (2013) Modelling the geomechanics of gas storage: a case study from the Iona gas field, Australia. Int J Greenh Gas Control 13:138–148

    Article  Google Scholar 

  • Towhata I, Kuntiwattanaku P, Seko I, Ohishi K (1993) Volume change of clays induced by heating as observed in consolidation tests. Soils Found 33:170–183

    Article  Google Scholar 

  • van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  • Vandenbohede A, Louwyck A, Lebbe L (2008) Conservative solute versus heat transport in porous media during push–pull tests. Transp Porous Media 76:265–287

    Article  Google Scholar 

  • VDI (2010) VDI Heat Atlas, 2nd edn. VDI-Verlag GmbH, Darmstadt

    Book  Google Scholar 

  • Vereecken H, Doring U, Hardelauf H, Jaekel U, Hashagen U, Neuendorf O, Schwarze H, Seidemann R (2000) Analysis of solute transport in a heterogeneous aquifer: the Krauthausen field experiment. J Contam Hydrol 45:329–358

    Article  Google Scholar 

  • Wagner V, Li T, Bayer P, Leven C, Dietrich P, Blum P (2014) Thermal tracer testing in a sedimentary aquifer: field experiment (Lauswiesen, Germany) and numerical simulation. Hydrogeol J 22:175–187

    Article  Google Scholar 

  • Walker WE, Harremoes P, Rotmans J, van der Sluijs JP, van Asselt MBA, Janssen P, Krayer von Krauss MP (2003) Defining uncertainty—a conceptual basis for uncertainty management in model-based decision systems. Integr Assess 4:5–17

    Article  Google Scholar 

  • Walter L, Binning PJ, Oladyshkin S, Flemisch B, Class H (2012) Brine migration resulting from CO2 injection into saline aquifers—an approach to risk estimation including various levels of uncertainty. Int J Greenh Gas Control 9:495–506

    Article  Google Scholar 

  • Watanabe N, McDermott C, Wang W, Taniguchi T, Kolditz O (2010) Uncertainty analysis of thermo-hydro-mechanical processes in heterogeneous porous media. Comput Mech 45:263–280

    Article  Google Scholar 

  • Weeks EP (1969) Determining the ratio of horizontal to vertical permeability by aquifer-test analysis. Water Resour Res 5:196–214

    Article  Google Scholar 

  • Westphal A, Kleyböker A, Jesußek A, Lienen T, Köber R, Würdemann H (submitted) Impact of subsurface energy storage on environmental conditions: a characterization of the microbial community at increased acetate concentrations and different sediment temperatures. Environ Earth Sci (this issue)

  • Wiedemeier TH, Rifai HS, Newell CJ, Wilson JT (1999) Natural Attenuation of fuels and chlorinated solvents in the subsurface. Wiley, New York

    Book  Google Scholar 

  • Wiegers CE, Schäfer D (2015) Numerische Szenariosimulationen zur Ausbreitung von hochmineralisiertem Wasser in oberflächennahen Süßwasseraquiferen. Grundwasser 20:85–95

    Article  Google Scholar 

  • Wiegers C, Schäfer D, Köber R, Dahmke A (2012) Expansion and migration of gaseous and dissolved CO2 in a site specific shallow aquifer. In: Proceedings of the TOUGH Symposium 2012, Berkley, CA, USA

  • Willemsen A, Appelo CAJ (1985) Chemical reactions during heat storage in shallow aquifers in the Netherlands: laboratiry experiments and geochemical modelling. In: 18th Congress of the International Association of Hydrogeologists, Cambridge

  • Xie M, Bauer S, Kolditz O, Nowak T, Shao H (2006) Numerical simulation of reactive processes in an experiment with partially saturated bentonite. J Contam Hydrol 83:122–147

    Article  Google Scholar 

  • Xu T, Apps JA, Pruess K, Yamamoto H (2007) Numerical modeling of injection and mineral trapping of CO2 with H2S and SO2 in a sandstone formation. Chem Geol 242:319–346

    Article  Google Scholar 

  • Xu T, Spycher N, Sonnenthal E, Zhang G, Zheng L, Pruess K (2011) TOUGHREACT Version 2.0: a simulator for subsurface reactive transport under non-isothermal multiphase flow conditions. Comput Geosci 37:763–774

    Article  Google Scholar 

  • Zhang Y, Gable CW (2008) Two-scale modeling of solute transport in an experimental stratigraphy. J Hydrol 348:395–411

    Article  Google Scholar 

  • Zheng C, Gorelick SM (2003) Analysis of solute transport in flow fields influenced by preferential flowpaths at the decimeter scale. Ground Water 41:142–155

    Article  Google Scholar 

  • Zoback M (2010) Reservoir geomechanics. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the funding provided by the German Ministry of Education and Research (BMBF) for the ANGUS + project, Grant number 03EK3022, as well as the support of the Project Management Jülich (PTJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Dethlefsen.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “Subsurface Energy Storage”, guest edited by Sebastian Bauer, Andreas Dahmke, and Olaf Kolditz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dethlefsen, F., Beyer, C., Feeser, V. et al. Parameterizability of processes in subsurface energy and mass storage. Environ Earth Sci 75, 885 (2016). https://doi.org/10.1007/s12665-016-5626-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5626-1

keywords

Navigation