Parameterizability of processes in subsurface energy and mass storage

Supported by a review of processes, codes, parameters, and a regional example: Schleswig-Holstein, Germany
  • Frank Dethlefsen
  • Christof Beyer
  • Volker Feeser
  • Ralf Köber
Thematic Issue
  • 222 Downloads
Part of the following topical collections:
  1. Subsurface Energy Storage

Abstract

The numerical simulation of scenarios is a promising approach when quantifying the potential hydraulic, thermal, geomechanical, and chemical effects of subsurface energy and mass storage. Particularly, the coupling of processes is a strong point in numerical simulations. This study defines the geoscientific parameter demand as well as the demand for process understanding for simulating subsurface energy and mass storage, describes the existing numerical codes to conduct the simulations, provides generally valid parameter values, and emphasizes on discussing parameters where only few values exist. In this context, it is exemplified that the parameterizability of the regarded processes is determined by an uncertainty in parameter values (variability or aleatory uncertainty) as well as in the understanding of processes (epistemic uncertainty) as it was suggested by Walker et al. (Integr Assess 4:5–17, 2003). The study categorizes the knowledge about parameter values and processes into these uncertainty groups and exemplarily evaluates the impacts of the uncertainties. Using this approach illustrates the concepts needed for calculating prediction errors of numerical scenario simulations, such as sensitivity analyses in the case of statistical data uncertainty and laboratory or field studies in the case of scenario uncertainties.

keywords

Parameter Processes Simulation Energy storage Uncertainty North German Basin 

References

  1. Abuel-Naga HM, Bergado DT, Bouazza A, Ramana GV (2007) Volume change behaviour of saturated clays under drained heating conditions: experimental results and constitutive modeling. Can Geotech J 44:942–956CrossRefGoogle Scholar
  2. Acharya RC, Valocchi AJ, Werth CJ, Willingham TW (2007) Pore-scale simulation of dispersion and reaction along a transverse mixing zone in two-dimensional porous media. Water Resour Res 43:W10435CrossRefGoogle Scholar
  3. Agemar T, Alten J-A, Ganz B, Kuder J, Kühne K, Schumacher S, Schulz R (2014) The Geothermal Information System for Germany (GeotIS). Z dtsch Ges Geowiss 165:129–144Google Scholar
  4. Allen R, Doherty T, Erikson R, Wiles L (1983) Factors affecting storage of compressed air in porous rock reservoirs. Pacific Northwest Laboratory, Technical Report PNL-4707Google Scholar
  5. Anderson MP (2005) Heat as a ground water tracer. Ground Water 43:951–968CrossRefGoogle Scholar
  6. Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. A.A. Balkema Publishers, AmsterdamCrossRefGoogle Scholar
  7. Arias F, Sen TK (2009) Removal of zinc metal ion (Zn2+) from its aqueous solution by kaolin clay mineral: a kinetic and equilibrium study. Colloids Surf A 348:100–108CrossRefGoogle Scholar
  8. Arning E, Kölling M, Panteleit B, Reichling J, Schulz HD (2006) Einfluss oberflächennaher Wärmegewinnung auf geochemische Prozesse im Grundwasserleiter. Grundwasser 1(2006):27–39CrossRefGoogle Scholar
  9. Audigane P, Gaus I, Czernichowski-Lauriol I, Pruess K, Xu T (2007) Two-dimensional reactive transport modelling of CO2 injection in a saline aquifer at the Sleipner site, North Sea. Am J Sci 307:974–1008CrossRefGoogle Scholar
  10. Baldi G, Hueckel T, Pellegrini R (1988) Thermal volume changes of mineral-water system in low-porosity clay soils. Can Geotech J 25:807–825CrossRefGoogle Scholar
  11. Ballarini E, Beyer C, Griebler C, Bauer RD, Bauer S (2014) Model based evaluation of a contaminant plume development under aerobic and anaerobic conditions in 2D bench-scale tank experiments. Biodegradation 25:351–371CrossRefGoogle Scholar
  12. Bauer S, Beyer C, Kolditz O (2006) Assessing measurement uncertainty of first-order degradation rates in heterogeneous aquifers. Water Resour Res 42:W01420CrossRefGoogle Scholar
  13. Bauer S, Beyer C, Dethlefsen F, Dietrich P, Duttmann R, Ebert M, Feeser V, Görke U, Köber R, Kolditz O, Rabbel W, Schanz T, Schäfer D, Würdemann H, Dahmke A (2013) Impacts of the use of the geological subsurface for energy storage: an investigation concept. Environ Earth Sci 70:3935–3943CrossRefGoogle Scholar
  14. Bauer S, Pfeiffer W, Boockmeyer A, Dahmke A, Beyer C (2015) Quantifying induced effects of subsurface renewable energy storage. Energy Procedia 76:633–641CrossRefGoogle Scholar
  15. Bear J (1972) Dynamics of fluids in porous media. Dover Publications, New YorkGoogle Scholar
  16. Bear J, Bachmat Y (1990) Introduction to modeling of transport phenomena in porous media. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  17. Beckman KL, Determeyer PL, Mowrey EH (1995) Natural gas storage: historical development and expected evolution: December 1994–February 1995. Gas Research Institute, HoustonGoogle Scholar
  18. Benisch K, Bauer S (2013) Short- and long-term regional pressure build-up during CO2 injection and its applicability for site monitoring. Int J Greenh Gas Control 19:220–233CrossRefGoogle Scholar
  19. Benisch K, Graupner B, Bauer S (2013) The coupled OpenGeoSys-Eclipse simulator for simulation of CO2 storage—code comparison for fluid flow and geomechanical processes. Energy Procedia 37:3663–3671CrossRefGoogle Scholar
  20. Benz SA, Bayer P, Menberg K, Jung S, Blum P (2015) Spatial resolution of anthropogenic heat fluxes into urban aquifers. Sci Total Environ 524–525:427–439CrossRefGoogle Scholar
  21. Berta M, Dethlefsen F, Ebert M, Dahmke A (submitted) Surface passivation model explains pyrite oxidation kinetics in column experiments with up to 11 bars p(O2). Environ Earth Sci (this issue)Google Scholar
  22. Beyer C, Popp S, Bauer S (submitted) Simulation of temperature effects on groundwater flow, reactive contaminant dissolution, transport and biodegradation due to shallow geothermal use. Environ Earth Sci (this issue)Google Scholar
  23. Beyer C, Li D, de Lucia M, Kühn M, Bauer S (2012) Modelling CO2-induced fluid-rock interactions in the Altensalzwedel gas reservoir. Part II: coupled reactive transport simulation. Environ Earth Sci 67:573–588CrossRefGoogle Scholar
  24. Birkholzer JT, Apps JA, Zheng L, Zhang Y, Xu T, Tsang C-F (2008) Water quality effects caused by CO2 intrusion into shallow grunondwater. Earth Science Division, Lawrence Berkley National Laboratory, BerkleyGoogle Scholar
  25. Boley C (2012) Handbuch Geotechnik. Vieweg + Teubner Verlag, HeidelbergCrossRefGoogle Scholar
  26. Bons PD, van Milligen BP, Blum P (2013) A general unified expression for solute and heat dispersion in homogeneous porous media. Water Resour Res 49:6166–6178CrossRefGoogle Scholar
  27. Bonte M, Stuyfzand PJ, Hulsmann A, van Beelen P (2011) Underground Thermal Energy Storage: Environmental risks and policy developments in the Netherlands and European Union. Ecol Soc 16(1):22CrossRefGoogle Scholar
  28. Bonte M, Röling WF, Zaura E, van der Wielen PW, Stuyfzand PJ, van Breukelen BM (2013a) Impacts of shallow geothermal energy production on redox processes and microbial communities. Environ Sci Technol 47:14476–14484CrossRefGoogle Scholar
  29. Bonte M, van Breukelen BM, Stuyfzand PJ (2013b) Temperature-induced impacts on groundwater quality and arsenic mobility in anoxic aquifer sediments used for both drinking water production and shallow geothermal energy production. Water Res 47:5088–5100CrossRefGoogle Scholar
  30. Boockmeyer A, Bauer S (2014) High-temperature heat storage in geological media: high-resolution simulation of near-borehole processes. Geotech Lett 4:151–156CrossRefGoogle Scholar
  31. Boockmeyer A, Bauer S (submitted) Efficient simulation of multiple borehole heat exchanger storage sites. Environ Earth Sci (this issue)Google Scholar
  32. Brielmann H, Lueders T, Schregelmann K, Ferraro F, Avramov M, Hammerl V, Blum P, Bayer P, Griebler C (2011) Oberflächennahe Geothermie und ihren potenziellen Auswirkungen auf Grundwasserökologie. Grundwasser 16:77–91CrossRefGoogle Scholar
  33. Brons HJ, Griffioen J, Appelo CAJ, Zehnder AJB (1991) (Bio)geochemical reactions in aquifer material from a thermal energy storage site. Water Res 25:729–736CrossRefGoogle Scholar
  34. Brooks R, Corey A (1964) Hydraulic properties of porous media. Colorado State University, Fort CollinsGoogle Scholar
  35. Burghignoli A, Desideri A, Miliziano S (2000) A laboratory study on the thermomechanical behaviour of clayey soils. Can Geotech J 37:764–780CrossRefGoogle Scholar
  36. Cappa F, Rutqvist J (2011) Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2. Int J Greenh Gas Control 5:336–346CrossRefGoogle Scholar
  37. Cara M (1994) Geophysik. Springer, HeidelbergCrossRefGoogle Scholar
  38. Carroll S, Walther J (1990) Kaolinite dissolution at 25 °C, 60 °C, and 80 °C. Am J Sci 290:797–810CrossRefGoogle Scholar
  39. Cekerevac C, Laloui L (2004) Experimental study of thermal effects on the mechanical behaviour of a clay. Int J Numer Anal Methods 28:209–228CrossRefGoogle Scholar
  40. Chen Y, Brantley S (1997) Temperature- and pH-dependence of albite dissolution rate at acid pH. Chem Geol 135:275–290CrossRefGoogle Scholar
  41. Chen F, Freedman DL, Falta RW, Murdoch LC (2012) Henry’s law constants of chlorinated solvents at elevated temperatures. Chemosphere 86:156–165CrossRefGoogle Scholar
  42. Cirpka OA, Chiogna G, Rolle M, Bellin A (2015) Transverse mixing in three-dimensional nonstationary anisotropic heterogeneous porous media. Water Resour Res 51:241–260CrossRefGoogle Scholar
  43. Clauser C (2003) Numerical simulation of reactive flow in hot aquifers, SHEMAT and Processing SHEMAT. Springer, BerlinCrossRefGoogle Scholar
  44. Clauser C (2011a) Thermal storage and transport properties of rocks, I: Heat capacity and latent heat. In: Gupta HK (ed) Encyclopedia of solid earth geophysics, 2nd edn. Springer, Dordrecht, pp 1423–1431CrossRefGoogle Scholar
  45. Clauser C (2011b) Thermal storage and transport properties of rocks, II: Thermal conductivity and diffusivity. In: Gupta HK (ed) Encyclopedia of solid earth geophysics, 2nd edn. Springer, Dordrecht, pp 1431–1448CrossRefGoogle Scholar
  46. Clauser C (2014) Einführung in die Geophysik. Springer Spektrum Verlag, HeidelbergCrossRefGoogle Scholar
  47. Clayton CJ, Dando PR (1996) Comparison of seepage and seal leakage. In: Schumacher D, Abrams MA (eds). Hydrocarbon migration and its near-surface expression. AAPG Memoirs 66. pp 169–171Google Scholar
  48. Crotogino F, Donadei S, Bünger U, Landinger H (2010) Large-scale hydrogen underground storage for securing future energy supplies. In: 18th World Hydrogen Energy Conference, Essen/GermanyGoogle Scholar
  49. Cui YJ, Sultan N, Delage P (2000) A thermomechanical model for saturated clays. Can Geotech J 37:607–620CrossRefGoogle Scholar
  50. Dando PR, O’Hara SCM, Schuster U, Taylor LJ, Clayton CJ, Baylis S, Laier T (1994) Gas seepage from a carbonate-cemented sandstone reef on the Kattegat coast of Denmark. Mar Petol Geol 11:182–189CrossRefGoogle Scholar
  51. Davis NS, de Wiest RJM (1966) Hydrogeology. Wiley, New YorkGoogle Scholar
  52. de Marsily G (1986) Quantitive hydrogeology. Academic Press, San DiegoGoogle Scholar
  53. Delahaye CH, Alonso EE (1999) Modelling of gas migration in clay. In: VI Argentine Congress of Computational Mechanics, Mendoza, ArgentinaGoogle Scholar
  54. Dethlefsen F, Nolde M, Schäfer D, Dahmke A (submitted) Basic parameterization of Schleswig–Holstein’s shallow geological formations for numerical reactive transport simulations based on existing data. Environ Earth Sci (this issue)Google Scholar
  55. Dethlefsen F, Haase C, Ebert M, Dahmke A (2012) Uncertainties of geochemical modeling during CO2 sequestration applying batch equilibrium calculations. Environ Earth Sci 65:1105–1117CrossRefGoogle Scholar
  56. Dethlefsen F, Köber R, Schäfer D, al Hagrey SA, Hornbruch G, Ebert M, Beyer M, Großmann J, Dahmke A (2013) Monitoring approaches for detecting and evaluating CO2 and formation water leakages into near-surface aquifers. Energy Procedia 37:4886–4893CrossRefGoogle Scholar
  57. Dethlefsen F, Ebert M, Dahmke A (2014a) A geological database for parameterization in numerical modeling of subsurface storage in Northern Germany. Environ Earth Sci 71:2227–2244CrossRefGoogle Scholar
  58. Dethlefsen F, Peter A, Hornbruch G, Lamert H, Garbe-Schönberg D, Beyer M, Dietrich P, Dahmke A (2014b) Hydrogeochemical alteration of groundwater due to a CO2 injection test into a shallow aquifer in Northeast Germany. European Geosciences Union General Assembly, ViennaGoogle Scholar
  59. Dethlefsen F, Bauer S, Dahmke A (2015) Current status and further needs in parameterization for an underground land use planning. In: The Third Sustainable Earth Science Conference & Exhibition. EarthDoc, Celle, GermanyGoogle Scholar
  60. Diersch H-JG (2014) FEFLOW Finite element modeling of flow, mass and heat transport in porous and fractured media. Springer, BerlinGoogle Scholar
  61. Diersch HJG, Kolditz O (1998) Coupled groundwater flow and transport: 2. Thermohaline and 3D convection systems. Adv Water Resour 21:401–425CrossRefGoogle Scholar
  62. Diersch HJG, Kolditz O (2002) Variable-density flow and transport in porous media: approaches and challenges. Adv Water Resour 25:899–944CrossRefGoogle Scholar
  63. Diersch H-JG, Bauer D, Heidemann W, Rühaak W, Schätzl P (2011) Finite element modeling of borehole heat exchanger systems Part 1. Fundam Comput Geosci 37:1122–1135CrossRefGoogle Scholar
  64. DIN 38402-13 (1985-12) German standard methods for the examination of water, waste water and sludge; general information (group A); sampling from aquifers (A 13)Google Scholar
  65. Doornenbal JC, Stevenson AG (2010) Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications b.v., HoutenGoogle Scholar
  66. Doughty C, Freifeld BM (2013) Modeling CO2 injection at Cranfield, Mississippi: investigation of methane and temperature effects. Greenh Gases Sci Technol 3:475–490CrossRefGoogle Scholar
  67. Duan Z, Li D (2008) Coupled phase and aqueous species equilibrium of the H2O–CO2–NaCl–CaCO3 system from 0 to 250°C, 1 to 1000 bar with NaCl concentrations up to saturation of halite. Geochim Cosmochim Acta 72:5128–5145CrossRefGoogle Scholar
  68. Duan Z, Hu J, Li D, Mao S (2008) Densities of the CO2–H2O and CO2–H2O–NaCl systems up to 647 K and 100 MPa. Energy Fuel 22:1666–1674CrossRefGoogle Scholar
  69. DVWK (1992) Entnahme und Untersuchungsumfang von Grundwasserproben. Merkblatt zur Wasserwirtschaft DVWK 128Google Scholar
  70. DVWK (1997) Tiefenorientierte Probenahme aus Grundwassermessstellen. Merkblätter zur Wasserwirtschaft DVWK 245Google Scholar
  71. Engel J, Lauer C (2010) Einführung in die Boden- und Felsmechanik. Carl Hanser Verlag, MünchenCrossRefGoogle Scholar
  72. Eriksson G, Konigsberger E (2008) FactSage and ChemApp. Two tools for the prediction of multiphase chemical equilibria in solutions. Pure Appl Chem 80:1293–1302CrossRefGoogle Scholar
  73. Esposito A, Benson SM (2012) Evaluation and development of options for remediation of CO2 leakage into groundwater aquifers from geologic carbon storage. Int J Greenh Gas Control 7:62–73CrossRefGoogle Scholar
  74. Evanko CR, Dzombak DA (1998) Influence of structural features on sorption of NOM-analogue organic acids to geothite. Environ Sci Technol 32:2846–2855CrossRefGoogle Scholar
  75. Evans DJ (2008) An appraisal of underground gas storage technologies and incidents for the development of risk assessment methodology. Nottingham, British Geological SurveyGoogle Scholar
  76. Filius JD, Lumsdon DG, Meeussen JCL, Hiemstra T, van Riemsdijk WH (2000) Adsorption of fulvic acids on geothite. Geochim Cosmochim Acta 64:51–60CrossRefGoogle Scholar
  77. Finsterle S, Sonnenthal EL, Spycher N (2014) Advances in subsurface modeling using the TOUGH suite of simulators. Comput Geosci 65:2–12CrossRefGoogle Scholar
  78. Fischer C, Arvidson RS, Lüttge A (2012) How predictable are dissolution rates of crystalline material? Geochim Cosmochim Acta 98:177–185CrossRefGoogle Scholar
  79. Fournier RO (1977) Chemical geothermometers and mixing models for geothermal systems. Geothermics 5:41–50CrossRefGoogle Scholar
  80. Francke H, Thorade M (2010) Density and viscosity of brine: an overview from a process engineers perspective. Chem Erde-Geochem 70(Suppl. 3):23–32CrossRefGoogle Scholar
  81. Franklin J, Dusseault M (1989) Rock Engineering. McGraw-Hill Publishing Company, New YorkGoogle Scholar
  82. Freyberg DL (1986) A natural gradient experiment on solute transport in a sand aquifer. 2. Spatial moments and the advection and dispersion of nonreactive tracers. Water Resour Res 22:2031–2046CrossRefGoogle Scholar
  83. Friis AK, Heimann AC, Jakobsen R, Albrechtsen HJ, Cox E, Bjerg PL (2007) Temperature dependence of anaerobic TCE-dechlorination in a highly enriched Dehalococcoides-containing culture. Water Res 41:355–364CrossRefGoogle Scholar
  84. Fujii H, Itoi R, Fujii J, Uchida Y (2005) Optimizing the design of large-scale ground-coupled heat pump systems using groundwater and heat transport modeling. Geothermics 34:347–364CrossRefGoogle Scholar
  85. Garabedian SP, LeBlanc DR, Gelhar LW, Celia MA (1991) Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts: 2. Analysis of spatial moments for a nonreactive tracer. Water Resour Res 27:911–924CrossRefGoogle Scholar
  86. Garbe-Schönberg D (1993) Simultaneous determination of thirty-seven trace elements in twenty-eight international rock standards by ICP-MS. Geostand Newslett 17:81–97CrossRefGoogle Scholar
  87. Gaupp R (1991) Zur Fazies und Diagenese des Mittelrhät-Sandsteins im Gasfeld Thönse. Veröffentlichungen der Niedersächsischen Akademie der Geowissenschaften 6:34–55Google Scholar
  88. Gaus I, Audigane P, André L, Lions J, Jacquemet N, Durst P, Czernichowski-Lauriol I, Azaroual M (2008) Geochemical and solute transport modelling for CO2 storage, what to expect from it? Int J Greenh Gas Control 2:605–625CrossRefGoogle Scholar
  89. Goldschagg B (2014) Rekonstruktion der in situ Zusammensetzung und Temperatur norddeutscher Tiefenwässer. MSc Thesis, Institute of Geosciences-Christian-Albrechts-University KielGoogle Scholar
  90. Graham J, Tanaka N, Crilly T, Alfaro M (2001) Modified Cam-Clay modeling of temperature effects in clays. Can Geotech J 38:608–621CrossRefGoogle Scholar
  91. Grandel S, Dahmke A (2004) Monitored Natural Attenuation of chlorinated solvents: assessment of potential and limitations. Biodegradation 15:371–386CrossRefGoogle Scholar
  92. Grathwohl P (1997) Gefährdung des Grundwassers durch Freisetzung organischer Schadstoffe: Methoden zur Berechnung der in situ-Schadstoffkonzentrationen. Grundwasser 4(97):157–166CrossRefGoogle Scholar
  93. Graupner B, Li D, Bauer S (2011) The coupled simulator ECLIPSE–OpenGeoSys for the simulation of CO2 storage in saline formations. Energy Procedia 4:3794–3800CrossRefGoogle Scholar
  94. Griebler C, Kellermann C, Stumpp C, Hegler F, Kuntz D, Walker-Hertkorn S (2015) Auswirkungen thermischer Veränderungen infolge der Nutzung oberflächennaher Geothermie auf die Beschaffenheit des Grundwassers und seiner Lebensgemeinschaften—Empfehlungen für eine umweltverträgliche Nutzung. Dessau-Rosslau, UmweltbundesamtGoogle Scholar
  95. Gudehus G (1981) Bodenmechanik. Ferdinand Enke Verlag, StuttgartGoogle Scholar
  96. Gunter WD, Perkins EH, McCann TJ (1993) Aquifer disposal of CO2-rich gases: reaction design for added capacity. Energy Convers Manag 34:941–948CrossRefGoogle Scholar
  97. Haase C, Dethlefsen F, Ebert M, Dahmke A (2013) Uncertainty in geochemical modelling of CO2 and calcite dissolution in NaCl solutions due to different modelling codes and thermodynamic databases. Appl Geochem 33:306–317CrossRefGoogle Scholar
  98. Haase C, Dahmke A, Ebert M, Schäfer D, Dethlefsen F (2014) Suitability of existing numerical model codes and thermodynamic databases for the prognosis of calcite dissolution processes in near-surface sediments due to a CO2 leakage investigated by column experiments. Aquat Geochem 20:639–661CrossRefGoogle Scholar
  99. Haase C, Ebert M, Dethlefsen F (2016) Uncertainties of geochemical codes and thermodynamic databases for predicting the impact of carbon dioxide on geologic formations. Appl Geochem 67:81–92CrossRefGoogle Scholar
  100. Hähnlein S, Molina-Giraldo N, Blum P, Bayer P, Grathwohl P (2010) Ausbreitung von Kältefahnen im Grundwasser bei Erdwärmesonden. Grundwasser 15:123–133CrossRefGoogle Scholar
  101. Hähnlein S, Bayer P, Ferguson G, Blum P (2013) Sustainability and policy for the thermal use of shallow geothermal energy. Energy Policy 59:914–925CrossRefGoogle Scholar
  102. Hamidi AH, Tourchi S, Khazaei C (2015) Thermomechanical constitutive model for saturated clays based on critical state theory. Int J Geomech 15(1):04014038CrossRefGoogle Scholar
  103. Hammond G, Lichtner P (2010) Field-scale model for the natural attenuation of uranium at the Hanford 300 area using high-performance computing. Water Resour Res 46:W09527CrossRefGoogle Scholar
  104. Hammond G, Lichtner P, Lu C, Mills R (2011) PFLOTRAN: Reactive Flow Transport Code for use on laptops to leadership-class supercomputers. In: Zhang F, Yeh G, Parker J (eds) Ground water reactive transport models. Bentham Science Publishers, Emirate of SharjahGoogle Scholar
  105. Hecht-Méndez J, de Paly M, Beck M, Bayer P (2013) Optimization of energy extraction for vertical closed-loop geothermal systems considering groundwater flow. Energy Convers Manag 66:1–10CrossRefGoogle Scholar
  106. Hess KM, Wolf SH, Celia MA (1992) Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts. 3. Hydraulic conductivity variability and calculated macrodispersivities. Water Resour Res 28:2011–2027CrossRefGoogle Scholar
  107. Hildenbrand A, Schlömer S, Krooss BM (2002) Gas breakthrough experiments on fine-grained sedimentary rocks. Geofluids 2:3–23CrossRefGoogle Scholar
  108. Hildenbrand A, Schlömer S, Krooss BM, Littke R (2004) Gas breakthrough experiments on pelitic rocks: comparative study with N2, CO2 and CH4. Geofluids 4:61–80CrossRefGoogle Scholar
  109. Hölting B (1995) Hydrogeologie. Enke Verlag, Wiesbaden/MainzGoogle Scholar
  110. Hopmans JW, Simunek J, Bristow KL (2002) Indirect estimation of soil thermal properties and water flux using heat pulse probe measurements: geometry and dispersion effects. Water Resour Res 38:7-1–7-14CrossRefGoogle Scholar
  111. Horning E-D (2007) Spannungs-Verformungsverhalten von wechselfestem Gestein. Institut für Geotechnik der TU FreibergGoogle Scholar
  112. Hoth P, Seibt A, Kellner T, Huenges E (1997) Geowissenschaftliche Bewertungsgrundlagen zur Nutzung hydrothermaler Ressourcen in Norddeutschland. Geoforschungszentrum PotsdamGoogle Scholar
  113. Hou MZ, Kracke T, Gou Y, Lou X, Xing W (2014) Konzepte zur Berechnung der mikroseismischen Aktivität bei der energetischen Nutzung geothermischer Systeme im tiefen Untergrund—Einzelprojekt 6: THM:C gekoppelte Untersuchungen zu Mechanismen und freigesetzten Deformationsenergien der seismischen Ereignisse in der Reservoirsimulations- und Betriebsphase. Energie-Forschungszentrum Niedersachsen (EFZN), Technische Universität Clausthal, GolsarGoogle Scholar
  114. Hovland FT, Summerville JH (1985) Characteristics of two natural gas seepages in the North Sea. Mar Petol Geol 2:319–326CrossRefGoogle Scholar
  115. Howard DM, Howard PJA (1993) Relationships between CO2 evolution, moisture content and temperature for a range of soil types. Soil Biol Biochem 25:1537–1546CrossRefGoogle Scholar
  116. Hueckel T, Baldi G (1990) Thermoplasticity of saturated clays: experimental constitutive study. J Geotech Eng 116:1778–1796CrossRefGoogle Scholar
  117. Hueckel T, Borsetto M (1990) Thermoplasticity of saturated soils and shales: constitutive equations. J Geotech Eng 116:1765–1777CrossRefGoogle Scholar
  118. Hueckel T, Peano A, Pellegrini R (1994a) A constitutive law for thermo-plastic behaviour of rocks: an analogy with clays. Surv Geophys 15:643–671CrossRefGoogle Scholar
  119. Hueckel T, Peano A, Pellegrini R (1994b) A thermo-plastic constitutive law for brittle-plastic behaviour of rocks at high temperatures. Pure Appl Geophys 143:483–511CrossRefGoogle Scholar
  120. Istok JD, Park MM, Peacock AD, Oostrom M, Wietsma TW (2007) An experimental investigation of nitrogen gas produced during denitrification. Ground Water 45:461–467CrossRefGoogle Scholar
  121. Itasca (2006) FLAC3D, Fast Lagrangian analysis of continua in 3 dimensions, 3.0th edn. Itasca Consulting Group, MinneapolisGoogle Scholar
  122. Jesußek A (2012) Temperaturbedingte Auswirkungen unterirdischer Wärmespeicherung auf hydrogeochemische Sediment-Wasser-Wechselwirkungen in einem oberflächennahen Grundwasserleiter. Ph.D. Thesis, Faculty of Mathematics and Natural Sciences—Christian-Albrechts-University KielGoogle Scholar
  123. Jesußek A, Grandel S, Dahmke A (2013a) Impacts of subsurface heat storage on aquifer hydrogeochemistry. Environ Earth Sci 69:1999–2012CrossRefGoogle Scholar
  124. Jesußek A, Köber R, Grandel S, Dahmke A (2013b) Aquifer heat storage: sulphate reduction with acetate at increased temperatures. Environ Earth Sci 69:1763–1771CrossRefGoogle Scholar
  125. Jiménez S, Brauchler R, Hu R, Hu L, Schmidt S, Ptak T, Bayer P (2015) Prediction of solute transport in a heterogeneous aquifer utilizing hydraulic conductivity and specific storage tomograms. Water Resour Res 51:5504–5520CrossRefGoogle Scholar
  126. Kersten M, Vlasova N (2009) Arsenite adsorption on goethite at elevated temperatures. Appl Geochem 24:32–43CrossRefGoogle Scholar
  127. Kettel D (1996) A method for processing adsorbed methane stable isotope data from near surface based fractionation. In: Schumacher D, Abrams MA (eds). Hydrocarbon migration and its near-surface expression. AAPG Memoir 66. pp 319-336Google Scholar
  128. Kim J, Sonnenthal E, Rutqvist J (2015) A sequential implicit algorithm of chemo-thermo-poro-mechanics for fractured geothermal reservoirs. Comput Geosci 76:59–71CrossRefGoogle Scholar
  129. Klingler P (2010) Charakterisierung des geothermischen Reservoirs Riehen: 3D Struktur und Tracer-Test. CHYN-Zentrum für Hydrogeologie. Universität Neuenburg, NeuchâtelGoogle Scholar
  130. Knauss KG, Dibley MJ, Roald LN, Mew DA, Aines RD (2000) The aqueous solubility of trichloroethe (TCE) and tetrachloroethene (PCE) as a function of temperature. Appl Geochem 15:501–515CrossRefGoogle Scholar
  131. Kobranova VN (1989) Petrophysics. Springer, HeidelbergGoogle Scholar
  132. Kolditz O, Bauer S, Bilke L, Böttcher N, Delfs JO, Fischer T, Görke UJ, Kalbacher T, Kosakowski G, McDermott CI, Park CH, Radu F, Rink K, Shao H, Shao HB, Sun F, Sun YY, Singh AK, Taron J, Walther M, Wang W, Watanabe N, Wu Y, Xie M, Xu W, Zehner B (2012) OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ Earth Sci 67:589–599CrossRefGoogle Scholar
  133. Kolymbas D (1999) Introduction to hypoplasticity. Advances in geotechnical engineering and tunneling. Balkema, RotterdamGoogle Scholar
  134. Kolymbas D (2012) Barodesy: a new hypoplastic approach. Int J Numer Anal Methods 36:1220–1240CrossRefGoogle Scholar
  135. Koproch N, Köber R, Dahmke A (2015) Quantification of temperature impacts on the dissolution of chlorinated hydrocarbons into groundwater. GeoBerlin, BerlinGoogle Scholar
  136. Krayer von Krauss MP, Casman EA, Small MJ (2004) Elicitation of expert judgments of uncertainty in the risk assessment of herbicide-tolerant oilseed crops. Risk Anal 24:1515–1527CrossRefGoogle Scholar
  137. Kudla W (2012) ELSA Teil 1: Randbedingungen und Anforderungen bei Schächten für Endlager für hochradioaktive Abfälle. FZKA-PTE Endlagerforschung und nukleare SicherheitsforschungGoogle Scholar
  138. Kunkel R, Voigt H-J, Wendland F, Hannappel S (2004) Die natürliche, ubiquitär überprägte Grundwasserbeschaffenheit in Deutschland. Forschungszentrum Jülich, HYDOR Consult GmbH Berlin, Brandenburgusch-Technische Universität CottbusGoogle Scholar
  139. Laloui L, Cekerevac C (2003) Thermo-plasticity of clays: an isotropic yield mechanism. Comput Geotech 30:649–660CrossRefGoogle Scholar
  140. Laloui L, François B (2009) ACMEG-T: soil thermo plasticity model. J Eng Mech 135:932–944CrossRefGoogle Scholar
  141. Lanru J, Xianting F (2003) Numerical modeling for coupled thermo-hydro-mechanical and chemical processes (THMC) of geological media—international and Chinese experiences. Chin J Rock Mech Eng 22:1704–1715Google Scholar
  142. Lasaga AC (1984) Chemical kinetics of water–rock interactions. J Geophys Res 89:4009–4025CrossRefGoogle Scholar
  143. Leachman JW, Jacobsen RT, Penoncello SG, Lemmon EW (2009) Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen. J Phys Chem Ref Data 38:721–748CrossRefGoogle Scholar
  144. Lemppenau B (2015) Parametrisierung der Stratigraphie hinsichtlich des geomechanischen Bodenverhaltens als Basis für die Simulation von Energiespeicherszenarien im Bereich des Norddeutschen Beckens. Lehrstuhl für Grundbau, Boden- und Felsmechanik—Ruhr-Universität Bochum, unpublishedGoogle Scholar
  145. Li D, Bauer S, Benisch K, Graupner B, Beyer C (2014) OpenGeoSys-ChemApp: a coupled simulator for reactive transport in multiphase systems and application to CO2 storage formation in Northern Germany. Acta Geotech 9:67–79CrossRefGoogle Scholar
  146. Lide DR (2005) CFC handbook of chemistry and physics, 85th edn. Taylor & Francis, Boca RatonGoogle Scholar
  147. Liu EL, Xing HL (2009) A double hardening thermo-mechanical model for overconsolidated clays. Acta Geotech 4:1–6CrossRefGoogle Scholar
  148. Lovley DR, Chapelle FH, Woodward JC (1994) Use of dissolved H2 concentrations to determine distribution of microbially catalyzed redox reactions in anoxic groundwater. Environ Sci Technol 28:1205–1210CrossRefGoogle Scholar
  149. Lüders K, Köber R, Firmbach L, Dietrich P, Ebert M, Dahmke A (submitted) Gas phase formation during thermal energy storage in near surface aquifers—experimental and modelling results. Environ Earth Sci (this issue)Google Scholar
  150. Mangold D, Schmidt T (2006) Saisonale Wärmespeicher: Neue Pilotanlagen im Programm Solarthermie2000plus und Forschungsperspektiven. Statusseminar Thermische Energiespeicher, FreiburgGoogle Scholar
  151. Martens S, Liebscher A, Möller F, Würdemann H, Schilling F, Kühn M (2011) Progress report on the first European on-shore CO2 storage site at Ketzin (Germany)—second year of injection. Energy Procedia 4:3246–3253CrossRefGoogle Scholar
  152. McCann T (1998) Sandstone composition and provenance of the Rotliegend of the NE German Basin. Sediment Geol 116:177–198CrossRefGoogle Scholar
  153. Meckenstock RU, Elsner M, Griebler C, Lueders T, Stumpp C, Aamand J, Agathos SN, Albrechtsen H-J, Bastiaens L, Bjerg PL, Boon N, Dejonghe W, Huang WE, Schmidt SI, Smolders E, Sørensen SR, Springael D, van Breukelen BM (2015) Biodegradation: updating the concepts of control for microbial cleanup in contaminated aquifers. Environ Sci Technol 49:7073–7081CrossRefGoogle Scholar
  154. MELUR (2015) Energiewende Schleswig-Holstein. Ministerium für Energiewende, Landwirtschaft, Umwelt und Ländliche Räume Schleswig-HolsteinGoogle Scholar
  155. Menberg K, Bayer P, Zosseder K, Rumohr S, Blum P (2013) Subsurface urban heat islands in German cities. Sci Total Environ 442:123–133CrossRefGoogle Scholar
  156. Michaelis L, Menten ML (1913) Die Kinetik der Invertinwirkung. Biochem Ze 49:334–369Google Scholar
  157. Mitchell JK (1964) Shearing resistance of soils as a rate process. J Soil Mech Found Div 90:29–61Google Scholar
  158. Mitrakas MG, Panteliadis PC, Keramidas VZ, Tzimou-Tsitouridou RD, Sikalisis CA (2009) Predicting Fe3+ dose for As (V) removal at pHs and temperatures commonly encountered in natural waters. Chem Eng J 155:716–721CrossRefGoogle Scholar
  159. Modaressi H, Laloui L (1997) A thermo-viscoplastic constitutive model for clays. Int J Numer Anal Methods 21:313–335CrossRefGoogle Scholar
  160. Molina-Giraldo N, Bayer P, Blum P (2011) Evaluating the influence of thermal dispersion on temperature plumes from geothermal systems using analytical solutions. Int J Therm Sci 50:1223–1231CrossRefGoogle Scholar
  161. Moltyaner GL, Killey RWD (1988a) Twin Lake tracer test—transverse dispersion. Water Resour Res 24:1628–1637CrossRefGoogle Scholar
  162. Moltyaner GL, Killey RWD (1988b) Twin Lake tracer tests—longitudinal dispersion. Water Resour Res 24:1613–1627CrossRefGoogle Scholar
  163. Monod J (1949) The growth of bacterial cultures. Ann Rev Microbiol 3:371–394CrossRefGoogle Scholar
  164. Mualem Y (1976) A new model for predicting the conductivity of unsaturated porous media. Water Resour Res 12:513–522CrossRefGoogle Scholar
  165. Müller EP, Papendieck G (1975) Zur Verteilung, Genese und Dynamik von Tiefenwässern unter besonderer Berücksichtigung des Zechsteins. Z Geol Wiss 3:167–196Google Scholar
  166. NAGRA (2002) Nagra—Technischer Bericht 02-03: Projekt Opalinuston. Projektträger Karlsruhe—Wassertechnologie und Entsorgung (PTKA-WTE)Google Scholar
  167. Navarre-Sitchler A, Maxwell R, Siirila E, Hammond G, Lichtner P (2013) Elucidating geochemical response of shallow heterogeneous aquifers to CO2 leakage using high-performance computing: implications for monitoring of CO2 sequestration. Adv Water Resour 53:45–55CrossRefGoogle Scholar
  168. Nelson DL, Cox MM (2000) Lehninger Principles of Biochemistry. Worth Publishers, New YorkGoogle Scholar
  169. Nolde M, Biniyaz E, Dethlefsen F, Schwanebeck M, Duttmann R (2015) Development of a 3D online planning tool for the evaluation of potential underground energy storage areas. In: The Third Sustainable Earth Science Conference & Exhibition. EarthDoc, Celle, GermanyGoogle Scholar
  170. Nolde M, Schwanebeck M, Dethlefsen F, Duttmann R (submitted) Utilization of a 3D webGIS to support spatial planning regarding underground energy storage in the context of the German energy transition plan in Schleswig-Holstein. Environ Earth Sci (this issue)Google Scholar
  171. Norden B, Förster A, Vu-Hoang D, Marcelis F, Springer N, Le Nir I (2010) Lithological and petrophysical core-log interpretation in CO2SINK, the European CO2 onshore research storage and verification project. Society of Petroleum EngineersGoogle Scholar
  172. Norton JP, Brown JD, Mysiak J (2006) To what extent, and how, might uncertainty be defined? Comments engendered by “Defining uncertainty: a conceptual basis for uncertainty management in model-based decision support”: Walker et al., Integrated Assessment 4: 1, 2003. Integr Assess 6:83–88Google Scholar
  173. Oladyshkin S, Class H, Helmig R, Nowak W (2011a) A concept for data-driven uncertainty quantification and its application to carbon dioxide storage in geological formations. Adv Water Resour 34:1508–1518CrossRefGoogle Scholar
  174. Oladyshkin S, Class H, Helmig R, Nowak W (2011b) An integrative approach to robust design and probabilistic risk assessment for CO2 storage in geological formations. Comput Geosci 15:565–577CrossRefGoogle Scholar
  175. Otto R (2012) Zur Abschätzung von Wärmeleitfähigkeiten der oberflächennahen Lockergesteinsfolge in Norddeutschland. Grundwasser 17:219–229CrossRefGoogle Scholar
  176. Pacheco FAL, Landim PMB (2005) Two-way regionalized classification of multivariate datasets and its application to the assessment of hydrodynamic dispersion. Math Geol 37:393–417CrossRefGoogle Scholar
  177. Palandri JL, Kharaka YK (2004) A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Menlo Park, CA, USAGoogle Scholar
  178. Panfilov M (2010) Underground storage of hydrogen: in situ self-organisation and methane generation. Transp Porous Media 85:841–865CrossRefGoogle Scholar
  179. Pang Z-H, Reed M (1998) Theoretical chemical thermometry on geothermal waters: problems and methods. Geochim Cosmochim Acta 62:1083–1091CrossRefGoogle Scholar
  180. Park C-H, Böttcher N, Wang W, Kolditz O (2011) Are upwind techniques in multi-phase flow models necessary? J Comput Phys 9(2011):8304–8312CrossRefGoogle Scholar
  181. Parkhurst DL, Appelo CAJ (1999) PHREEQC (Version 2). DOE, Denver COGoogle Scholar
  182. Peng D-Y, Robinson DB (1976) A new two-constant equation of state. Ing Eng Chem Fundam 15:59–64CrossRefGoogle Scholar
  183. Pfeiffer WT (2012) Einfluss von kleinskaligen geologischen Strukturen auf die Phasenausbreitung von CO2 in tiefen salinaren Formationen. M.Sc. Thesis, Institute of Geosciences—Christian-Albrechts-University KielGoogle Scholar
  184. Pfeiffer WT, Bauer S (2015) Subsurface porous media hydrogen storage—scenario development and simulation. Energy Procedia 76:565–572CrossRefGoogle Scholar
  185. Popp S, Beyer C, Dahmke A, Bauer S (2015a) Model development and numerical simulation of a seasonal heat storage in a contaminated shallow aquifer. Energy Procedia 76:361–370CrossRefGoogle Scholar
  186. Popp S, Beyer C, Koproch N, Köber R, Dahmke A, Bauer S (2015b) Untersuchung der Auswirkung unterirdischer Wärmespeicherung auf eine TCE-Grundwasserkontamination durch numerische Szenariensimulationen. bbr 03/2015:54-61Google Scholar
  187. Popp S, Beyer C, Dahmke A, Koproch N, Köber R, Bauer S (submitted) Temperature dependent dissolution of residual non-aqueous phase liquids—model development and verification. Environ Earth Sci (this issue)Google Scholar
  188. Prinz H, Strauß R (2006) Abriss der Ingenieurgeologie. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  189. Pruess K, Nordbotten J (2011) Numerical simulation studies of the long-term evolution of a CO2 plume in a saline aquifer with a sloping caprock. Transp Porous Media 90:135–151CrossRefGoogle Scholar
  190. Pruess K, Oldenburg C, Moridis G (1999) TOUGH2 user's guide, ver 2.0. Earth sciences division, Lawrence Berkeley National Laboratory, University of California, Berkeley, USA, p 210Google Scholar
  191. Rehfeldt KR, Boggs JM, Gelhar LW (1992) Field-study of dispersion in a heterogeneous aquifer. 3. Geostatistical analysis of hydraulic conductivity. Water Resour Res 28:3309–3324CrossRefGoogle Scholar
  192. Riva M, Guadagnini L, Guadagnini A, Ptak T, Martac E (2006) Probabilistic study of well capture zones distribution at the Lauswiesen field site. J Contam Hydrol 88:92–118CrossRefGoogle Scholar
  193. Riva M, Guadagnini A, Fernandez-Garcia D, Sanchez-Vila X, Ptak T (2008) Relative importance of geostatistical and transport models in describing heavily tailed breakthrough curves at the Lauswiesen site. J Contam Hydrol 101:1–13CrossRefGoogle Scholar
  194. Robinet J-C, Rahbaou A, Plas F, Lebon P (1996) A constitutive thermomechanical model for saturated clays. Eng Geol 41:145–169CrossRefGoogle Scholar
  195. Rolle M, Muniruzzaman M, Haberer CM, Grathwohl P (2013) Coulombic effects in advection-dominated transport of electrolytes in porous media: multicomponent ionic dispersion. Geochim Cosmochim Acta 120:195–205CrossRefGoogle Scholar
  196. Rutqvist J, Wu Y-S, Tsang C-F, Bodvarsson G (2002) A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. Int J Rock Mech Min Sci 39:429–442CrossRefGoogle Scholar
  197. Rutqvist J, Vasco DW, Myer L (2010) Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In Salah, Algeria. Int J Greenh Gas Control 4:225–230CrossRefGoogle Scholar
  198. Sauty JP, Gringarten AC, Fabris H, Thiery D, Menjoz A, Landel PA (1982) Sensible energy storage in aquifers—2. Field experiments and comparison with theoretical results. Water Resour Res 18:253–265CrossRefGoogle Scholar
  199. Schäfer D, Schlenz B, Dahmke A (2004) Evaluation of exploration and monitoring methods for verification of natural attenuation using the virtual aquifer approach. Biodegradation 15:453–465CrossRefGoogle Scholar
  200. Scheidegger A (1974) The physics of flow through porous media, 3rd edn. University of Toronto Press, TorontoGoogle Scholar
  201. Schlumberger (2010) VISAGE. 2010 ednGoogle Scholar
  202. Schlumberger (2011) ECLIPSE Reservoir Engineering Software. 2011.3 ednGoogle Scholar
  203. Schön J (1983) Petrophysik: physikalische Eigenschaften von Gesteinen und Mineralen. Ferdinand Enke Verlag, StuttgartGoogle Scholar
  204. Singh AK, Görke U-J, Kolditz O (2011) Numerical simulation of non-isothermal compositional gas flow: application to carbon dioxide injection into gas reservoirs. Energy 36:3446–3458CrossRefGoogle Scholar
  205. Smigai P, Greksak M, Kozankova J, Buzek F, Onderka V, Wolf I (1990) Methanogenic bacteria as a key factor involved in changes of town gas in an underground reservoir. FEMS Microbiol Ecol 73:221–224CrossRefGoogle Scholar
  206. Steefel CI, Appelo CAJ, Arora B, Jacques D, Kalbacher T, Kolditz O, Lagneau V, Lichtner PC, Mayer KU, Meeussen JCL, Molins S, Moulton D, Shao H, Simunek J, Spycher N, Yabusaki SB, Yeh GT (2015) Reactive transport codes for subsurface environmental simulation. Comput Geosci 19:445–478CrossRefGoogle Scholar
  207. Sterner M, Stadler I (2014) Energiespeicher: Bedarf, Technologien, Integration. Springer, HeidelbergGoogle Scholar
  208. Stöckert F, Brenne S, Molenda M, Bartmann K, Hoenig S, Alber M (2013) Geomechanische Charackterisierung von Vulkaniten und Sedimenten des Rotliegenden im Norddeutschen Becken für die Optimierung des Aufschlusses geothermischer Lagerstätten. 19 Tagung für Ingenieurgeologie mit Forum für junge Ingenieurgeologen, MünchenGoogle Scholar
  209. Struder JA, Koller MG (1997) Bodendynamik. Springer, HeidelbergCrossRefGoogle Scholar
  210. Struß J (2015) Statistische Untersuchung der Hydrochemie norddeutscher Tiefenwässer. M.Sc. Thesis, Institute of Geosciences—Christian-Albrechts-University KielGoogle Scholar
  211. Sudicky EA (1986) A natural gradient experiment on solute transport in a sand aquifer—spatial variability of hydraulic conductivity and its role in the dispersion process. Water Resour Res 22:2069–2082CrossRefGoogle Scholar
  212. Sultan N, Delange P, Cui YJ (2002) Temperature effects on the volume change behaviour of Boom clay. Eng Geol 64:135–145CrossRefGoogle Scholar
  213. Taron J, Elsworth D, Min K-B (2009) Numerical simulation of thermal-hydrologic-mechanical-chemical processes in deformable, fractured porous media. Int J Rock Mech Min 46:842–854CrossRefGoogle Scholar
  214. Teng HH, Dove PM, De YJJ (2000) Kinetics of calcite growth: surface processes and relationship to macroscopic rate laws. Geochim Cosmochim Acta 64:2255–2266CrossRefGoogle Scholar
  215. Tenthorey E, Vidal-Gilbert S, Backé G, Puspitasari R, Pallikathekathil ZJ, Maney B, Dewhurst D (2013) Modelling the geomechanics of gas storage: a case study from the Iona gas field, Australia. Int J Greenh Gas Control 13:138–148CrossRefGoogle Scholar
  216. Towhata I, Kuntiwattanaku P, Seko I, Ohishi K (1993) Volume change of clays induced by heating as observed in consolidation tests. Soils Found 33:170–183CrossRefGoogle Scholar
  217. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898CrossRefGoogle Scholar
  218. Vandenbohede A, Louwyck A, Lebbe L (2008) Conservative solute versus heat transport in porous media during push–pull tests. Transp Porous Media 76:265–287CrossRefGoogle Scholar
  219. VDI (2010) VDI Heat Atlas, 2nd edn. VDI-Verlag GmbH, DarmstadtCrossRefGoogle Scholar
  220. Vereecken H, Doring U, Hardelauf H, Jaekel U, Hashagen U, Neuendorf O, Schwarze H, Seidemann R (2000) Analysis of solute transport in a heterogeneous aquifer: the Krauthausen field experiment. J Contam Hydrol 45:329–358CrossRefGoogle Scholar
  221. Wagner V, Li T, Bayer P, Leven C, Dietrich P, Blum P (2014) Thermal tracer testing in a sedimentary aquifer: field experiment (Lauswiesen, Germany) and numerical simulation. Hydrogeol J 22:175–187CrossRefGoogle Scholar
  222. Walker WE, Harremoes P, Rotmans J, van der Sluijs JP, van Asselt MBA, Janssen P, Krayer von Krauss MP (2003) Defining uncertainty—a conceptual basis for uncertainty management in model-based decision systems. Integr Assess 4:5–17CrossRefGoogle Scholar
  223. Walter L, Binning PJ, Oladyshkin S, Flemisch B, Class H (2012) Brine migration resulting from CO2 injection into saline aquifers—an approach to risk estimation including various levels of uncertainty. Int J Greenh Gas Control 9:495–506CrossRefGoogle Scholar
  224. Watanabe N, McDermott C, Wang W, Taniguchi T, Kolditz O (2010) Uncertainty analysis of thermo-hydro-mechanical processes in heterogeneous porous media. Comput Mech 45:263–280CrossRefGoogle Scholar
  225. Weeks EP (1969) Determining the ratio of horizontal to vertical permeability by aquifer-test analysis. Water Resour Res 5:196–214CrossRefGoogle Scholar
  226. Westphal A, Kleyböker A, Jesußek A, Lienen T, Köber R, Würdemann H (submitted) Impact of subsurface energy storage on environmental conditions: a characterization of the microbial community at increased acetate concentrations and different sediment temperatures. Environ Earth Sci (this issue)Google Scholar
  227. Wiedemeier TH, Rifai HS, Newell CJ, Wilson JT (1999) Natural Attenuation of fuels and chlorinated solvents in the subsurface. Wiley, New YorkCrossRefGoogle Scholar
  228. Wiegers CE, Schäfer D (2015) Numerische Szenariosimulationen zur Ausbreitung von hochmineralisiertem Wasser in oberflächennahen Süßwasseraquiferen. Grundwasser 20:85–95CrossRefGoogle Scholar
  229. Wiegers C, Schäfer D, Köber R, Dahmke A (2012) Expansion and migration of gaseous and dissolved CO2 in a site specific shallow aquifer. In: Proceedings of the TOUGH Symposium 2012, Berkley, CA, USAGoogle Scholar
  230. Willemsen A, Appelo CAJ (1985) Chemical reactions during heat storage in shallow aquifers in the Netherlands: laboratiry experiments and geochemical modelling. In: 18th Congress of the International Association of Hydrogeologists, CambridgeGoogle Scholar
  231. Xie M, Bauer S, Kolditz O, Nowak T, Shao H (2006) Numerical simulation of reactive processes in an experiment with partially saturated bentonite. J Contam Hydrol 83:122–147CrossRefGoogle Scholar
  232. Xu T, Apps JA, Pruess K, Yamamoto H (2007) Numerical modeling of injection and mineral trapping of CO2 with H2S and SO2 in a sandstone formation. Chem Geol 242:319–346CrossRefGoogle Scholar
  233. Xu T, Spycher N, Sonnenthal E, Zhang G, Zheng L, Pruess K (2011) TOUGHREACT Version 2.0: a simulator for subsurface reactive transport under non-isothermal multiphase flow conditions. Comput Geosci 37:763–774CrossRefGoogle Scholar
  234. Zhang Y, Gable CW (2008) Two-scale modeling of solute transport in an experimental stratigraphy. J Hydrol 348:395–411CrossRefGoogle Scholar
  235. Zheng C, Gorelick SM (2003) Analysis of solute transport in flow fields influenced by preferential flowpaths at the decimeter scale. Ground Water 41:142–155CrossRefGoogle Scholar
  236. Zoback M (2010) Reservoir geomechanics. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Frank Dethlefsen
    • 1
  • Christof Beyer
    • 1
  • Volker Feeser
    • 1
  • Ralf Köber
    • 1
  1. 1.Institute of GeosciencesChristian-Albrechts-Universität zu KielKielGermany

Personalised recommendations