Abstract
In salt marshes, the hydrodynamics and the availability of iron, organic matter and sulphate, influence the formation and/or dissolution of iron sulfides and iron oxyhydroxides. Therefore, they constitute key factors affecting the iron biogeochemical processes in these environments. The aim of this work is to evaluate the physico-chemical and mineralogical variations associated to iron biogeochemistry in palaeo and actual salt marshes in the area of influence of the Mar Chiquita coastal lagoon, Pampean Plain, Argentina. In soils of exhumed palaeo marshes, the iron contents are 56–95 μmol g−1, whereas these contents decrease to 36–75 μmol g−1 in actual marsh soils. The presence of framboidal and poliframboidal pyrites associated with gypsum, barite, calcite, halite and iron oxyhydroxides defines the conditions of the pedosedimentary sequences of the Holocene paleomarshes. Sequences of pyrite formation (sulfidization) and degradation (sulfuricization) were observed. These processes were evidenced by a sequential extraction, reflecting that the largest proportion of iron is in the form of crystalline iron oxides (28–76 %) and lepidocrocite (6–16 %); while the proportion associated with ferrihydrite and pyrite is low (0–9 and 1–17 %, respectively). These facts could be partly explained by the complex redox processes characteristic of these environments, such as aeration generated by the rhizosphere and intense bioturbation by invertebrates. These iron biomineralizations have been useful because they allow paleoenvironmental interpretations and characterization of paleomarshes, and environmental inferences related to the management of actual salt marshes.
This is a preview of subscription content, access via your institution.





References
Araújo JMC Jr, Otero XL, Marques AGB, Nóbrega GN, Silva JRF, Ferreira TO (2012) Selective geochemistry of iron in mangrove soils in a semiarid tropical climate: effects of the burrowing activity of the crabs Ucides cordatus and Uca maracoani. Geo Mar Lett 32(4):289–300
Berner RA (1970) Sedimentary pyrite formation. Am J Sci 268:1–23
Berner RA (1982) Burial of organic carbon and pyrite sulfur in modern ocean: its geochemical and environmental significance. Am J Sci 282:451–473
Berner RA (1984) Sedimentary pyrite formation: an update. Geochim et Cosmochim Acta 48:605–615
Bianchi TS (2006) Biogeochemistry of estuaries. Oxford University Press, Oxford
Borrelli N, Osterrieth M, Marcovecchio J (2008) Interrelations of vegetal cover, silicophytolith content and pedogenesis of typical Argiudolls of the Pampean Plain, Argentina. Catena 75(2):146–153
Bortolus A (2006) The austral cordgrass Spartina densiflora Brong: its taxonomy, biogeography and natural history. J Biogeogr 33:158–168
Burgos JJ, Vidal AL (1951) Los climas de la República Argentina, según la nueva clasificación de Tornthwaite. Meteoros 1(1):3–32
Buurman P (1998) Classification of paleosols—a comment. Quat Int 51/52(7/8):17–33
Duarte CM, Middelburg JJ, Caraco N (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2:1–8
Fanning M, Rabenhorst M, Burch S, Islam K, Tangren S (2002) Sulfides and sulfates. In: Dixon and Schulze (eds). Soil mineralogy with enviromental application. SSSA Book Series 7 7: 229–261
Fasano JL, Hernández MA, Isla FI, Schnack EJ (1982) Aspectos evolutivos y ambientales de la Laguna Mar Chiquita (Provincia de Buenos Aires, Argentina). Oceanologica Acta, 285–292 (Special Publication)
Ferreira TO, Vidal-Torrado P, Otero XL, Macías F (2007) Are mangrove forest substrates sediments or soils? A case study in southeastern Brazil. Catena 70:79–91
Ferreira TO, Otero XL, Souza VS Jr, Vidal-Torrado P, Macías F, Firme LP (2010) Spatial patterns of soil attributes and components in a mangrove system in Southeast Brazil (São Paulo). J Soils Sediments 10:995–1006
Ferreira TO, Nóbrega GN, Albuquerque AGBM, Sartor LR, Gomes IS, Artur AG, Otero XL (2015) Pyrite as a proxy for the identification of former coastal lagoons in semiarid NE Brazil. GeoMar Lett 35:355–366
Fortin D, Leppard GG, Tessier A (1993) Characteristics of lacustrine diagenetic iron oxyhydroxides. Geochim Cosmochim Acta 57:4391–4404
Frenguelli J (1950) Rasgos generales de la morfología y la geología de la Provincia de Buenos Aires. Lemit 2(33):72
Galehouse JS (1971) Sedimentation analysis. In: Carver (ed) Procedures in sedimentary petrology. Wiley Interscience, USA, pp 69–94
Henderson GM (2002) New oceanic proxies for paleoclimate. Earth Planet Sci Lett 203:1–13
Howarth RW (1984) The ecological significance of sulfur in the energy of salt marsh and coastal marine sediments. Biogeochemistry 1:5–27
Huerta-Díaz MA, Morse JW (1990) A quantitative method for determination of trace metals in sedimentary pyrite. Mar Chem 29:119–144
Ingram RL (1971) Sieve analysis. In: Carver (ed) Procedures in sedimentary petrology. Wiley Interscience, USA, pp 41–68
INTA (1987) Unidad de Recurso de Suelos: Mapa geomorfológico y de suelos de la Provincia de Buenos Aires. Escala 1:50.000. Castelar
Iribarne OO (ed) (2001) Reserva de Biosfera Mar Chiquita: Características físicas, biológicas y ecológicas. Ed Martín, Mar del Plata, Argentina
Iribarne OO, Bortolus A, Botto F (1997) Between-habitat differences in burrow characteristics and trophic modes in the southwestern Atlantic burrowing crab Chasmagnathus granulata. Mar Ecol Prog Ser 155:132–145
Isacch JP, Costa CSB, Rodríguez-Gallego L, Conde D, Escapa M, Gagliardini DA, Iribarne OO (2006) Distribution of saltmarsh plant communities associated with environmental factors along a latitudinal gradient in the south-west Atlantic coast. J Biogeogr 3:888–900
Isla FI, Fasano JL, Ferrero L, Espinosa M, Schnack EJ (1988) Late Cuaternary marine-estuarine sequences of the Southeastern coast of Buenos Aires Province, Argentina. Quat S Am Ant Pen 6:137–157
Koretsky CM, Miller D (2008) Seasonal influence of the needle rush Juncus roemerianus on saltmarsh porewater geochemistry. Estuaries Coast 31:70–84
Koretsky CM, Moore CM, Lowe KL, Meile C, Dichristina TJ, van Cappellen P (2003) Seasonal oscillation of microbial iron and sulfate reduction in saltmarsh sediments (Sapelo Island, GA, USA). Biogeochemistry 64:179–203
Kostka JE, Luther GW III (1994) Partitioning and speciation of solid phase iron in saltmarsh sediments. Geochim et Cosmochim Acta 58(7):1701–1710
Lovley DR (2000) Environmental microbe-mineral interactions. ASM Press, Washington
Lowenstam HA (1981) Minerals formed by organisms. Science 211:1126–1131
Luther GW III, Kostka JE, Church TM, Sulzberger B, Stumm W (1992) Seasonal iron cycling in the salt-marsh sedimentary environment: the importance of Fe(II) and Fe(III) in the dissolution of Fe(III) minerals and pyrite, respectively. Mar Chem 40:81–103
Marcovecchio J, Freije H, De Marco S, Gavio MA, Ferrer L, Andrade S, Beltrame O, Asteasuain R (2006) Seasonality of hydrographic variables in a coastal lagoon: Mar Chiquita, Argentina. Aquat Conserv Mar Freshw Ecosyst 16:335–347
Morse JW, Millero FJ, Cornwell JC, Rickard D (1987) The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters. Earth Sci Rev 24:1–42
Nóbrega GN, Ferreira TO, Romero RE, Marques AGB, Otero XL (2013) Iron and sulfur geochemistry in semi-arid mangrove soils (Ceará, Brazil) in relation to seasonal changes and shrimp farming effluents. Environ Monit Assess 185(9):393–7407
Odum EP (1970) Fundamentals of ecology. Saunders, USA
Olivier S, Escofet AM, Penchaszadeh P, Orenzanz JM (1972) Estudios ecológicos de la región estuarial de Mar Chiquita (Buenos Aires, Argentina). Las comunidades bentónicas. Anal Com Inv Cient 193(5–6):237–262
Osterrieth M (1992) Pirita framboidal en secuencias sedimentarias del Holoceno tardío en Mar Chiquita, Buenos Aires, Argentina. In: IV Reunión Argentina de Sedimentología 2: 73–80
Osterrieth M (1998) Paleosols and their relation to sea level changes during the Late Quaternary in Mar Chiquita, Buenos Aires, Argentina. Quatern Int 51–52:43–44
Osterrieth M (2005) Biomineralizaciones de hierro y calcio, su rol en procesos biogeoquímicos de secuencias sedimentarias del sudeste bonaerense. In: XVI Congreso Geológico Argentino III: 255–262
Otero XL, Macias F (2003) Spatial variation in pyritization of trace metals in salt-marsh soils. Biogeochemistry 62:59–86
Otero XL, Ferreira TO, Vidal-Torrado P, Macías F (2006) Spatial variation in pore water geochemistry in a mangrove system (Pai Matos island, Cananeia–Brazil). Appl Geochem 21:2171–2186
Otero XL, Ferreira TO, Huerta-Díaz MA, Partiti CSM, Souza V Jr, Vidal-Torrado P, Macías F (2009) Geochemistry of iron and manganese in soils and sediments of a mangrove system, Island of Pai Matos (Cananeia–SP, Brazil). Geoderma 148:318–335
Polastro RM (1981) Authigenic kaolinite and associated pyrite in chalk of the Creaceous Niobrara formation, eastern Colorado. J Sed Petrol 5(1,2):553–562
Pons LJ (1965) A quantitative microscopical method of pyrite determination in soils. In: Jorgerius A (ed) Proc Microm Symp 401–409
Raiswell R, Berner RA (1985) Pyrite formation in euxinic and semi-euxinic sediments. Am J Sci 285:710–724
Roychoudhury A, Kostka J, Van Cappellen P (2003) Pyritization: a palaeoenvironmental and redox proxy reevaluated. Estuar Coast Shelf Sci 57:1183–1193
Schnack EJ, Gardenal M (1979) Holocene transgressive deposits, Mar Chiquita lagoon coast, Buenos Aires province, Argentina. Proc Int Symp Coast Evol Quat, Sao Paulo, pp 419–425
Simonson RW (1959) Outline of a generalizade theoryof soil genesis. Soil Sci Soc Am Proc 23:152–156
Soil Survey Staff (1996) Keys to soil taxonomy, 7th edn. United States Department of Agriculture, Washington
Spivak E, Luppi T, Bas C (2001) Cangrejos y camarones: las relaciones organismo-ambiente en las distintas fases del ciclo de vida. In: Iribarne O (ed) Reserva de la biosfera Mar Chiquita: características físicas, biológicas y ecológicas, Ed Martin, Mar del Plata, Argentina, pp 129–152
Stribling J (1997) The relative importance of sulfate availability in the growth of Spartina alterniflora and Spartina cynosuroides. Aquat Bot 56:131–143
Taillefert M, Neubhuber S, Bristow G (2007) The effect of tidal forcing on biogeochemical processes in intertidal salt marsh sediments. Geochem Trans 8:6
Tessier A, Campbell PGC, Bisso M (1979) Sequencial extraction procedure for the speciation of particulate trace metals. Anal Chem 5:844–855
Tobias C, Neubauer SC (2009) Salt marsh biogeochemistry—an overview. In: Perillo GME, Wolansky E, Cahoon DR, Brinson MM (eds) Coastal wetlands. An integrated ecosystem approach, Elsevier, Amsterdam, The Netherlands, pp 445–492
Tricart JL (1973) Geomorfología de la Pampa Deprimida. INTA 12:202
Vervoorst F (1967) La vegetación de la República Argentina Vll. Las comunidades vegetales de la depresión del Salado (Pcia de BsAs). INTA Serie Fitogeográfica 7:24
Viaroli P, Laserre P, Campostrini P (2007) Lagoons and coastal wetlands. Hidrobiología 577:1–3
Violante RA, Parker G, Cavallotto JL (2001) Evolución de las llanuras costeras del este bonaerense entre la bahía Samborombón y la laguna Mar Chiquita durante el Holoceno. Revista de la Asociación Geológica Argentina 56:51–66
Walkley Black (1965). In: Black C (ed) Methods of Soil Analysis. American Society of Agronomy, pp 1372–1375
Wilkin RT, Barnes HL, Brantley SL (1996) The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochim et Cosmochim Acta 60(20):3897–3912
Acknowledgements
This study was financially supported by Mar del Plata National University (EXA 741/15), National Agency for Science and Technology Promotion (ANPCyT, BID PICT No 1583), CONICET (PIP 112-20130100145CO) and MINCyT-CAPES (BR/09/13, BR/RED/14/14). The authors thank to Ing. José Vila for their assistance with SEM and EDS analysis.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Osterrieth, M., Borrelli, N., Alvarez, M.F. et al. Iron biogeochemistry in Holocene palaeo and actual salt marshes in coastal areas of the Pampean Plain, Argentina. Environ Earth Sci 75, 672 (2016). https://doi.org/10.1007/s12665-016-5506-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12665-016-5506-8
Keywords
- Biomineralization
- Framboidal and poliframboidal pyrites
- Sequential extraction
- Coastal wetlands