Skip to main content
Log in

A methodology for ranking potential pollution caused by abandoned mining wastes: application to sulfide mine tailings in Mazarrón (Southeast Spain)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Mining wastes often contain high concentrations of toxic elements, whose mobility and dispersion may pose an environmental hazard for soils, water, ecosystems and people. This article describes the partial application of a methodology designed to evaluate the pollution potential of abandoned mining wastes, using two indices for potential pollution evaluation: an index of contamination (IC) and a hazard average quotient (CPP). Composite samples, consisting of at least 30 subsamples, were taken at three sulfidic tailings impoundments in the mining area of Mazarrón (SE Spain). Mineralogical, physical, and chemical characteristics were analyzed: color, particle size, powder XRD analysis, pH, total content of toxic elements, and concentrations in leachates by the standard procedure EN-12457-2. Tailings were extremely acid (pH 2.30–2.52). Some ranges of total content (in mg/kg) were: As (381–565), Pb (2602–4487), Sb (139–170), and Zn (3254–5652). The concentration measured in the EN-12457 leachates (µg/L) was as high as 367,000 for Zn, 2030 for Cu, and 974 for Cd. The IC and CPP values were among the most high of the tailings inventoried in Spain. The combination of the indices provided a good estimation of the potential toxicity of these wastes, and it can be useful to rank abandoned mining waste facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acosta JA, Martínez-Martínez S, Martínez-Pagan P, Zornoza R, Carmona DM, Faz A (2011) Estudio de estabilidad en depósitos de lodos del Distrito Minero de Mazarrón (SE España): Riesgos potenciales sobre la Rambla de Las Moreras. Boletín Geológico y Minero 122:3–16

    Google Scholar 

  • Alberruche del Campo ME, Arranz-González JC, Rodríguez- Pacheco R, Vadillo-Fernández L, Rodríguez-Gómez V, Fernández-Naranjo FJ (2014). Manual para la evaluación de riesgos de instalaciones de residuos de industrias extractivas cerradas o abandonadas. MAGRAMA-IGME, Madrid. http://libros.igme.es/product_info.php?products_id=129

  • Alias LJ, Ortiz R, Hernández J, Linares P, Martínez MJ, Marín P (1990) Proyecto LUCDEME. Mapa de suelos escala 1: 100.000 Mazarrón. ICONA-Universidad de Murcia, Madrid

  • Arana R, Pérez-Sirvent C, Ortiz-González R (1993) Explotaciones mineras e impacto ambiental en el sector de Mazarrón (Murcia). In: Ortiz-Silla R (ed) Problemática Geoambiental y Desarrollo. Tomo 2. SEGAOT, Murcia, pp 811–835

    Google Scholar 

  • Arranz-González JC, Cala-Rivero V, Iribarren-Campaña I (2012) Geochemistry and mineralogy of surface pyritic tailings impoundments at two mining sites of the Iberian Pyrite Belt (SW Spain). Environ Earth Sci 65:669–680

    Article  Google Scholar 

  • Blowes DW, Ptacek CJ, Jurjovec J (2003) Mill tailings hydrogeology and geochemistry. In: Jambor JL, Blowes DW, Ritchie AIM (Ed), Environmental Aspects of Mine Wastes. Mineralogical Association of Canada Short Course Series, vol 31. Otawa, Ontario, pp 95–116

  • Bustillo MA, Aparicio A, García R (2010) Surface saline deposits and their substrates in a polluted arid valley (Murcia, Spain). Environ Earth Sci 60:1215–1225

    Article  Google Scholar 

  • Cappuyns V, Swennen R, Vandamme A, Niclaes M (2006) Environmental impact of the former Pb–Zn mining and smelting in East Belgium. J Geochem Explor 88:6–9

    Article  Google Scholar 

  • Carmona DM, Faz-Cano A, Arocena JM (2009) Cadmium, copper, lead, and zinc in secondary sulphate minerals in soils of mined areas in Southeast Spain. Geoderma 150:150–157

    Article  Google Scholar 

  • CEN (2002) EN 12457. Characterisation of waste-leaching-compliance test for leaching of granular waste materials and sludges, Part 2: single stage batch tests at liquid to solid ratio 10 l/kg with particle size below 4 mm. CEN, Brussels

    Google Scholar 

  • Chon HT, Lee JS, Lee JU (2011) Heavy metal contamination of soil: its risk assessment and bioremediation. Geosystem Eng 14:191–206

    Article  Google Scholar 

  • Courtin-Nomade A, Rakotoarisoa O, Bril H, Brybos M, Forestier L, Foucher F, Kunz M (2012) Weathering of Sb-rich mining and smelting residues: insight in solid speciation and soil bacteria toxicity. Chem Erde 72(S4):29–39

    Article  Google Scholar 

  • DIN-NORMEN (Deutsches Institut für Normung-Normen) (1984) DIN 38414-S4: German Standard Methods for the examination of water, waste water and sludge; group S (sludge and sediments); determination of leachability by water (S4). Deutsche Norm, Teil 4 Okt

  • Dold B (2010) Basic concepts in environmental geochemistry of sulfide mine-waste management. In: Sunil Kumar (ed) “Waste Management”, ISBN 978-953-7619-84-8. INTECH open access publications, pp 173–198. http://www.intechopen.com/books/show/title/waste-management

  • Dutrizac JE, Jambor JL (2000) Jarosites and their application in hydrometallurgy. In: Alpers CN, Jambor JL, Nordstrom DK (ed) Sulfate Minerals: Crystallography, Mineralogy and Environmental Significance. Reviews in Mineralogy and Geochemistry. Mineralogical Society of America and the Geochemical Society, vol 40. Washington, D.C., p 405–452

  • European Council (2002) Council decision of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC. Off J Eur Commun L1:27–49

    Google Scholar 

  • European Council of the European Union (1998) Council directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off J Eur Commun L330:32–54

    Google Scholar 

  • European Parliament and Council (2006) Union directive 2006/21/EC of 15 March 2006 on the management of waste from extractive industries. Off J Eur Commun L102:15–33

    Google Scholar 

  • Faz-Cano A, Martínez-Martínez S, Acosta Avilés JA (2009) Aportaciones a los noveles de fondo y de referencia de metales pesados en suelos naturales de la Región de Murcia. Universidad Politécnica de Cartagena, Cartagena

    Google Scholar 

  • Fendorf S, Eick MJ, Grossl P, Sparks DL (1997) Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environ Sci Technol 31(2):315–320

    Article  Google Scholar 

  • Ficklin WH, Plumlee GS, Smith KS, Mchugh JB (1992) Geochemical classification of mine drainages and natural drainages in mineralized areas. In: Maest Kharaka (ed) Water-rock interaction volume 1: low temperature environments. Balkema, Rotterdam

    Google Scholar 

  • Hageman PL, Briggs PH (2000) A simple field leach for rapid screening and qualitative characterization of mine waste material on abandoned mine lands. ICARD 2000. 5th International Conference on Acid Rock Drainage. Society for Mining, Metallurgy and Exploration Inc, Denver, pp 1463–1475

  • Hayes S, White S, Thomas T, Thompson L, Maier R, Chorover J (2009) Changes in lead and zinc lability during weathering-induced acidification of desert mine tailings: coupling chemical and micro-scale analyses. Appl Geochem 24:2234–2245

    Article  Google Scholar 

  • Jung MC (2001) Heavy metal contamination of soils and Waters in and around the Imcheon Au–Ag mine, Korea. Appl Geochem 16:1369–1375

    Article  Google Scholar 

  • Kim KK, Kim KW, Kim JY, Kim IS, Cheong YW, Min JS (2001) Characteristics of tailings from the closed metal mines as potential contamination source in South Korea. Environ Geol 41:358–364

    Article  Google Scholar 

  • Levei E, Frentiu T, Ponta M, Tanaselia C, Borodi G (2013) Characterization and assessment of potential environmental risk of tailings stored in seven impoundments in the Aries river basin, Western Romania. Chem Cent J 7:5p

    Article  Google Scholar 

  • Mac Donald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31

    Article  Google Scholar 

  • Marguí E, Salvadó V, Queralt I, Hidalgo M (2004) Comparison of three-stage sequential extraction and toxicity characteristic leaching tests to evaluate metal mobility in mining wastes. Anal Chim Acta 524:151–159

    Article  Google Scholar 

  • Martín-Crespo T, Gómez-Ortiz D, Martínez-Pagán P, De Ignacio-San José C, Martín-Velázquez S, Lillo J, Faz A (2012) Geoenvironmental characterization of riverbeds affected by mine tailings in The Mazarrón district (Spain). J Geochem Explor 110:119–120

    Google Scholar 

  • Martínez-Sánchez MJ, Pérez-Sirvent C (2007) Niveles de fondo y niveles genéricos de referencia de metales pesados en suelos de la Región de Murcia. Consejería de Desarrollo Sostenible y Ordenación del Territorio de la Región de Murcia, Murcia

    Google Scholar 

  • Nordstrom JM, Alpers CN (1999) Geochemistry of acid mine waters. In: Plumlee GS, Logdson MJ (eds) The environmental geochemistry of mineral deposits, vol 6A. Society of Economic Geologists, Littleton, pp 133–160

    Google Scholar 

  • NRCS (Natural Resources Conservation Service) (1993) Soil survey manual, Agricultural Handbook 18. Soil Survey Staff, Washington DC

    Google Scholar 

  • Oyarzun R, Lillo J, López-García JA, Esbrí JM, Cubas P, Llanos W, Higueras P (2011) The Mazarrón Pb–(Ag)–Zn mining district (SE Spain) as a source of heavy metal contamination in a semiarid realm: geochemical data from mine wastes, soils, and stream sediments. J Geochem Explor 109:113–124

    Article  Google Scholar 

  • Peech M (1965) Hydrogen-ion activity. In: Black CA (ed) Methods of soil analysis, Part II, chemical and microbiological properties. American Society of Agronomy, Madison

    Google Scholar 

  • Plumlee GS, Smith KS, Montour MR, Ficklin WH, Mosier EL (1999) Geologic controls on the composition of natural waters and mine waters draining diverse mineral-deposit types, In: Filipek LH, Plumlee GS (ed) The Environmental Geochemistry of Mineral Deposits, Part B: Case Studies and Research Topics. Reviews in Economic Geology, 6B: 373–432

  • Puura EM, D’Alessandro M (2005) A classification system for environmental pressures related to mine water discharges. Mine Water and Environ 24–1:43–52

    Article  Google Scholar 

  • Savage KS, Tingle TN, O’Day PA, Waychunas GA, Bird DK (2000) Arsenic speciation in pyrite and secondary weathering phases, Mother Lode Gold District, Tuolumne County, California. Appl Geochem 15:1219–1244

    Article  Google Scholar 

  • Silva LFO, Izquierdo M, Querol X, Finkelman RB, Oliveira MLS, Wollenschlager, Towler M, Pérez-López R, Macias F (2011) Leaching of potential hazardous elements of Coal Cleaning Rejects. Environ Monit Assess. 175:109–126

  • Smith KS, Ramsey CA, Hageman PL (2000) Sampling Strategy for the Rapid Screening of Mine-Waste Dumps on Abandoned Mine Lands. ICARD 2000. 5th International Conference on Acid Rock Drainage. Society for Mining, Metallurgy and Exploration Inc, Colorado, Denver, pp 1463–1475

  • USEPA (1994) Method 7471B (SW-846): Mercury in solid or semisolid waste (Manual Cold-Vapor Technique), Revision 2. U.S. Environmental Protection Agency, Washington DC

    Google Scholar 

  • USEPA (2002) National recommended water quality criteria. EPA 822-R-02-047. U.S. Environmental Protection Agency, Washington DC

    Google Scholar 

  • USEPA (2012) Drinking water standards and health advisories, 2012 Edition. EPA 822-S-12-001. U.S. Environmental Protection Agency, Washington DC

    Google Scholar 

Download references

Acknowledgments

This study has benefited from a collaboration agreement with the Spanish Ministry of Industry, Commerce and Tourism (2010–2012), and from a management entrustment with the Spanish Ministry of Agriculture, Food and Environment (2012–2013). The authors are grateful to two anonymous reviewers for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Arranz-González.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arranz-González, J.C., Rodríguez-Gómez, V., del Campo, E.A. et al. A methodology for ranking potential pollution caused by abandoned mining wastes: application to sulfide mine tailings in Mazarrón (Southeast Spain). Environ Earth Sci 75, 656 (2016). https://doi.org/10.1007/s12665-016-5495-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5495-7

Keywords

Navigation