From coal-mining waste to construction material: a study of its mineral phases

  • R. García Giménez
  • R. Vigil de la Villa
  • M. Frías
Original Article


The study from the recycling of coal mining waste from NW of Spain as pozzolans materials in cement industry is the scope of this present study. The thermal activation of coal-mining wastes, the formation of their hydrated phases and their evolution are analyzed, over pozzolanic reactions at 1, 7 and 28 days following activation. The coal-mining waste showed good pozzolanic activity, following thermal activation at 600 and 900 °C for 2 h. Total destruction of kaolinite is produced after treatment at 600 °C/2 h retention in the oven. This temperature and time are best suited for activation of the best environmental way. The compounds arising during the pozzolanic reaction in coal-mining waste activated at 600° and 900° in a Ca(OH)2 system were C–S–H gels, stratlingite (C2ASH8), tetracalcium aluminate hydrate (C4AH13), layered double hydroxides and monosulfoaluminate. When the temperature is 600 °C appeared layered double hydroxides via the metastable phase is favored during the first 7 days of reaction, while stratlingite is present as the major crystalline phase at 28 days into the pozzolanic reaction.


Coal-mining waste Layered double hydroxide Activation temperature Mineral phases Pozzolanic activity 



This research has been supported by the Spanish Ministry of Economy and Competitiveness (Project Ref. MAT2012-37005-CO3-01/02/03). The authors are also grateful to the Sociedad Anónima Hullera Vasco-Leonesa and to Spanish Cement Institute (IECA) for their help in this research.


  1. Ambroise J, Murat M, Pera J (1985) Hydration reaction and hardening of calcined clays and related minerals: V. Extension of the research and general conclusions. Cem Concr Res 15:261–268CrossRefGoogle Scholar
  2. Atkins M, Glasser FK, Kindness A (1991) Phase relations and solubility modelling in the CaO–Al2O3–SiO2–MgO–SO3–H2O system for application in blended cements. In: Materials Research Society, Ed. Proceedings of the Materials Research Society Symposium, vol 2, Pittsburgh, PA, pp 215–220Google Scholar
  3. Banfill PFG, Rodríguez O, Sánchez de Rojas MI, Frías M (2009) Effect of activation conditions of a kaolinite based waste on rheology of blended cement pastes. Cem Concr Res 39:843–848CrossRefGoogle Scholar
  4. Beltramini B, Suarez ML, Guilarducci A, Carrasco MF, Grether R (2010) Aprovechamiento de residuos de la depuración del carbón mineral: obtención de adiciones puzolánicas para el cemento portland. Rev Tecn Ciencia Uni Tecnol Nal Argentina 4:7–18Google Scholar
  5. Bian Z, Dong J (2009) The impact of disposal and treatment of coal mining wastes on environment and farmland. Environ Geol 58(3):625–634CrossRefGoogle Scholar
  6. Brindley GW, Brown G (1980) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society Monograph 5, LondonCrossRefGoogle Scholar
  7. Creelman RA, Ward CR, Schumacher G, Juniper L (2013) Relation between coal mineral matter and deposit mineralogy in pulverized fuel furnaces. Energy Fuel 27:5714–5724CrossRefGoogle Scholar
  8. Farmer VC (1974) The infrared spectra of minerals. Mineralogical Society Monograph no 4, LondonCrossRefGoogle Scholar
  9. Frías M, Sánchez de Rojas MI, Rodríguez O, García R, Vigil R (2008a) Characterization of calcined paper sludge as an environmentally friendly source of metakaolin for manufacture of cementitious materials. Adv Cem Res 20(1):23–30CrossRefGoogle Scholar
  10. Frías M, García R, Vigil R, Ferreiro S (2008b) Calcination of art paper sludge waste for the use as a supplementary cementing material. Appl Clay Sci 42:189–193CrossRefGoogle Scholar
  11. Frías M, Rodríguez O, García R, Vegas I (2008c) Influence of activation temperature on reaction kinetics in recycled clay waste-calcium hydroxide systems. J Am Ceram Soc 91(12):4044–4051CrossRefGoogle Scholar
  12. Frías M, Rodríguez O, Nebreda B, García R, Villar-Cocina E (2010) Influence of activation temperature of kaolinite based clay wastes on pozzolanic activity and kinetic parameters. Adv Cem Res 22(3):135–142CrossRefGoogle Scholar
  13. Frías M, Vigil de la Villa R, Sánchez de Rojas MI, Medina C, Juan A (2012a) Scientific aspects of kaolinite based coal mining wastes in pozzolan/Ca(OH)2 system. J Am Ceram Soc 95(1):386–391CrossRefGoogle Scholar
  14. Frías M, Sánchez de Rojas MI, García R, Juan A, Medina C (2012b) Effect of activated coal mining wastes on the properties of blended cement. Cem Concr Compos 34(5):678–683CrossRefGoogle Scholar
  15. Frías M, Vigil de la Villa R, García R, Sánchez de Rojas MI, Juan A (2013) The influence of slate waste activation conditions on mineralogical changes and pozzolanic behavior. J Am Ceram Soc 96(7):2276–2282CrossRefGoogle Scholar
  16. García R, Vigil de la Villa R, Frías M, Rodríguez O, Martínez-Ramírez S, Fernández-Carrasco L, de Soto IS, Villar-Cociña E (2015) Mineralogical study of calcined coal waste in a pozzolan/Ca(OH)2 system. Appl Clay Sci 108:45–54CrossRefGoogle Scholar
  17. Haibin L, Zhenling L (2010) Recycling utilization patterns of coal mining waste in China. Res Cons Recycl 54(12):1331–1340CrossRefGoogle Scholar
  18. Huang CL, Matijevic E (1996) Preparation and characterization of ultrafine iron-rich nickel ferrites. Solid State Ion 84:249–258CrossRefGoogle Scholar
  19. Lemeshev VG, Gudín IK, Savel YA, Tumanov DV, Lemeshev DO (2004) Utilization of coal mining waste in the production of building ceramic materials. Glass Cer 61(9–10):308–311CrossRefGoogle Scholar
  20. Leyva F, Matas J, Rodríguez Fernández LR (1984) Memoria y Hoja del Mapa Geológico de España, Escala 1:50.000, n° 129 (La Robla). 2ª serie Magna, IGME, MadridGoogle Scholar
  21. Li D, Song X, Gong C, Pan Z (2006) Research on cementitious behaviour and mechanism of pozzolanic cement with coal gangue. Cem Concr Res 36:1752–1759CrossRefGoogle Scholar
  22. Meyer F, Hempelmann R, Mathur S, Veith M (1999) Microemulsion mediated sol-gel synthesis of nano-scaled MAl2O4 (M = Co, Ni, Cu) spinels from single-source heterobimetallic alkoxide precursors. J Mater Chem 9:1755–1763CrossRefGoogle Scholar
  23. Moore DM, Reynolds RC (1987) X-ray diffraction and the identification and analysis of clay minerals, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  24. Pera J, Ambroise J, Chabannet M (2001) Transformation of waste into complementary cement materials, In: Malhotra, VM (ed) Seventh CANMET/ACI/JCI international conference on fly ash, silica fume, slag and natural pozzolans in concrete, SP199, pp 459–475Google Scholar
  25. Rodríguez Largo O, Vigil de la Villa R, Sánchez de Rojas MI, Frías M (2009) Novel use of kaolin wastes in blended cements. J Am Ceram Soc 92(10):2443–2446CrossRefGoogle Scholar
  26. Sabir BB, Wild S, Bai J (2001) Metakaolin and calcined clays as pozzolans for concrete: a review. Cem Concr Compos 23:441–454CrossRefGoogle Scholar
  27. Sayanam RA, Kalsotra AK, Mehta SK, Singh RS, Mandal G (1989) Studies on thermal transformations and pozzolanic activities of clay from Jammu region (India). J Therm Anal 35:99–106CrossRefGoogle Scholar
  28. Skarzynska K (1995a) Reuse of coal mining wastes in civil engineering—part 1: properties of minestone. Waste Manag 15(1):3–42CrossRefGoogle Scholar
  29. Skarzynska K (1995b) Reuse of coal mining wastes in civil engineering—part 2: utilization of minestone. Waste Manag 15(2):83–126CrossRefGoogle Scholar
  30. Taylor HFW (1997) Cement chemistry, 2nd edn. Thomas Telford, London, UKCrossRefGoogle Scholar
  31. Vega I, Urreta J, Frías M, García R (2009) Freeze–thaw resistance of blended cements containing calcined paper sludge. Constr Build Mater 23(8):2862–2868CrossRefGoogle Scholar
  32. Vigil de la Villa R, Frías M, Sánchez de Rojas MI, Vegas I, García R (2007) Mineralogical and morphological changes of calcined paper sludge at different temperatures and retention in furnace. Appl Clay Sci 36:279–286CrossRefGoogle Scholar
  33. Vigil de la Villa R, Frías M, García-Giménez R, Martínez-Ramírez S, Fernández-Carrasco L (2014) Chemical and mineral transformations that occur in mine waste and washery rejects during pre-utilization calcination. Int J Coal Geol 132:123–130CrossRefGoogle Scholar
  34. Ward CR (2002) Analysis and significance of mineral matter in coal seams. Int J Coal Geol 50:135–168CrossRefGoogle Scholar
  35. Wu Z, Young JF (1984) Formation of calcium hydroxide from aqueous suspensions of tricalcium silicate. J Am Ceram Soc 67(1):48–51CrossRefGoogle Scholar
  36. Zhao Y, Xing W, Lu W, Zhang X, Christensen TH (2012) Environmental impact assessment of the incineration of municipal solid waste with auxiliary coal in China. Waste Manag 32:1989–1998CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • R. García Giménez
    • 1
  • R. Vigil de la Villa
    • 1
  • M. Frías
    • 2
  1. 1.Departamento de Geología y Geoquímica, Unidad Asociada CSIC-UAM, Facultad de CienciasUniversidad Autónoma de MadridMadridSpain
  2. 2.Instituto Eduardo Torroja (CSIC)MadridSpain

Personalised recommendations