Skip to main content

Advertisement

Log in

Heavy metal monitoring of beach sands through environmental magnetism technique: a case study from Vengurla and Aravali beaches of Sindhudurg district, Maharashtra, India

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Mineral magnetic, geochemical and statistical analyses were carried on surface sediments collected from Vengurla and Aravali beach, along west coast of India, premonsoon (PreM), monsoon(M) and postmonsoon (PM). Magnetic concentration parameters (χlf, ARM, SIRM and HIRM) are strongly correlated within them PreM during M and PM. Thermomagnetic analysis identifies titanomagnetite, magnetite, maghemite and hematite as the dominant magnetic mineralogy of the sediments. Strong correlation was deciphered between magnetic parameters and heavy metal (Cu, Cr, Zn and Ni) PreM and PM which obliterated in M. This shows influx of magnetic minerals and heavy metals is more in M than PreM and PM. The monsoonal influx is more haphazard and random in M because of enhanced weathering resulting in weak correlation between different mineralogical and geochemical entities. This finding outlines the efficacy of simple, rapid and non-destructive magnetic measurement which can be used as an indicator for heavy metal contamination. It can act as a proxy for measuring of heavy metal content in the coastal and beach environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson NJ, Rippey B (1988) Diagenesis of magnetic minerals in the recent sediments of a eutrophic lake. Oceanogr, Limnol. doi:10.4319/lo.1988.33.6_part_2.1476

    Google Scholar 

  • Arkell B, Leeks G, Newson M, Oldfield F (1983) Trapping and tracing: some recent observations of supply and transport of coarse sediment from upland Wales. Spl Publ Inte Assoc Sedimentol 6:107–119

    Google Scholar 

  • Banerjee SK, King J, Marvin J (1981) A rapid method formagnetic granulometry with applications to environmental studies. Geophys Res Lett 8:333–336

    Article  Google Scholar 

  • Barron V, Torrent J (2002) Evidence for a simple pathway to maghemite in Earth and Mars soils. Geochim Cosmochim Acta 66:2801–2806

    Article  Google Scholar 

  • Blanchet CL, Thouveny N, Vidal L (2009) Formation and preservation of greigite (Fe3S4) in sediments from the Santa Barbara Basin: implications for paleoenvironmental changes during the past 35 ka. Paleoceanography 24:1–15

    Article  Google Scholar 

  • Bonnett PJP, Appleby PG, Oldfield F (1988) Radionuclides in coastal and estuarine sediments from Wirral and Lancashire. Sci Total Environ 70:215–236

    Article  Google Scholar 

  • Booth CA (2002) Sediment-Source-Linkages in the Gwendraeth Estuary,South Wales, based on mineral magnetic analyses. PhD thesis. University of Wolverhampton

  • Chan LS, Yeung CH, Yim WWS, Or OL (1998) Correlation between magnetic susceptibility and distribution of heavy metals in contaminated sea-floor sediments of Hong Kong Harbour. Environ Geol 36:77–86

    Article  Google Scholar 

  • Chandramohan P, Anand NM, Nayak BU (1992) Surfzone dynamics of the Konkan Coast, India. In: Desai BN (ed) Oceanography of the Indian Ocean. Oxford and IBH, New Delhi, pp 751–759

    Google Scholar 

  • Chandrasekar N, Cherian A, Rajamanickam M, Rajamanickam GV (2003) Formation of heavy minerals in the beaches between Kallar and Vembar. Curr Sci 3(1):207–212

    Google Scholar 

  • Chandrasekar N, Cherian A, Paul DK, Rajamanickam GV, Loveson VJ (2005) Geospatial application in the study of beach placer along the coast of Gulf of Mannar, India. Geocarta International 20(2):69–74

    Article  Google Scholar 

  • Chévrier V, Mathé PE, Rochette P, Gunnlaugsson HP (2006) Magnetic study of an Antarctica weathering profile on basalt: implications for recent weathering on Mars. Earth planet. Sci Lett 244:501–514

    Google Scholar 

  • Cioppa MT, Porter NJ, Trenhaile AS, Igbokwe B, Vickers J (2010) Beach sediment magnetism and sources: Lake Erie, Ontario, Canada. J Great Lake Res 36(4):674–685. doi:10.1016/j.jglr.2010.07.007

    Article  Google Scholar 

  • Clifton J, McDonald P, Plater A, Oldfield F (1997) Relationships between radionuclide content and textural properties in Irish Sea intertidal sediments. Water Air Soil Pollut 99:209–216

    Google Scholar 

  • Clifton J, McDonald P, Plater A, Oldfield F (1999) Derivation of a grainsize proxy to aid the modelling and prediction of radionuclide activity in saltmarshes and mud flats of the Eastern Irish Sea. Estuar Coast Shelf Sci 48:511–518

    Article  Google Scholar 

  • da Costa ACS (1996) Iron oxide minerals of soils derived from volcanic rocks in the Parana´ River Basin, Brazil. Ph.D. thesis. Ohio State University

  • Dearing JA (1999) Susceptibility. In: Walden J, Oldfield F, Smith JP (eds) Environmental magnetism: a practical guide. Quaternary Research Association, Cambridge, pp 35–62

    Google Scholar 

  • Deendar DI (2003) Structural controls in the formation of iron ore deposits and laterite in Vengurla area. Sustainable resource management in mining with special reference to coastal regions of Karnataka and Maharashtra. Mining Engineers Association of India, Belgaum Chapter Workshop, pp 8–10

    Google Scholar 

  • Peters C, Dekkers, MJ (2003) Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Phys Chem Earth 28:659–667

  • Dunlop D, Ozdemir O (1997) Rock magnetism: fundamentals and frontiers. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Fasiska EJ (1967) Structural aspects of the oxides and oxidehydrates of iron. Corros Sci 7:833–839

    Article  Google Scholar 

  • Fassbinder JWE, Stanjek H (1994) Magnetic properties of biogenic soil greigite (Fe3S4). Geophys Res Lett 21:2349–2352

    Article  Google Scholar 

  • Fontes MPF, Weed SB (1991) Iron oxides in selected Brazilian Oxisols: I mineralogy. Soil Sci Soc Am J 55:1143–1149

    Article  Google Scholar 

  • Gallaway E, Trenhaile AS, Cioppa MT, Hatfield RG (2012) Magnetic mineral transportand sorting in swash-zone: Northern Lake Erie, Canada. Sedimentology doi:10.1111/j.1365-3091.2012.01323.x

  • Gawali PB, Basavaiah N, Hanamgond PT (2010) Mineral magnetic properties of sediments of beaches, Redi-Vengurla Coast, Central West Coast of India: a seasonal characterization and provenance study. J Coast Res 263:569–579

    Article  Google Scholar 

  • Gee J, Nakanishi M (1995) Magnetic petrology and magnetic properties of western Pasific guyots: implications for seamount paleopoles. Proc ODP Sci Results 144:615–630

    Google Scholar 

  • Geiss CE, Zanner CW, Banerjee SK, Joanna M (2004) Signature of magnetic enhancement in a loessic soil in Nebraska, United States of America, Earth Planet. Sci Lett 228:355–367. doi:10.1016/j.epsl.2004.10.011

    Google Scholar 

  • Gujar AR, Ambre NV, Mislankar PG, Sridhar D (2010) Ilmenite, magnetite and chromite beach placers from South Maharashtra, Central West Coast of India. Resour Geol 60(1):71–86

    Article  Google Scholar 

  • Hatfield RG, Cioppa MT, Trenhaile AS (2010) Sediment sorting and beach erosion along a coastal foreland: Magnetic measurements in Point Pelee National park, Ontario, Canada. Sed Geol 231(3–4):63–73. doi:10.1016/j.sedgeo.2010.09.007

    Article  Google Scholar 

  • Hegde VS, Shalini G, Kanchanagouri DG (2006) Provenance of heavy minerals with special reference to ilmenite of the Honnavar Beach, central west coast of India. Curr Sci 91(5):644–648

    Google Scholar 

  • Heider F, Zitzelsberger A, Fabian F (1996) Magnetic susceptibility and remanent coercive force in grown magnetite crystals from 0.1 μm to 6 mm. Phys Earth Planet Int 93:239–256

    Article  Google Scholar 

  • Hiremath DA (2003) Iron ore deposits of Sindhudurg district Maharashtra state and their export potentiality. Sustainable resource management in mining with special reference to coastal regions of Karnataka and Maharashtra. Mining Engineers Association of India, Belgaum Chapter Workshop, pp 21–25

    Google Scholar 

  • Hutchinson SM, Prandle D (1994) Siltation in the saltmarsh of the Dee Estuary derived from 137Cs analysis of shallow cores. Estuar Coast Shelf Sci 38:471–478

    Article  Google Scholar 

  • Kurian NP, Prakash TN, Jose F, Black KP (2000) Hydrodynamic processes and heavy mineral deposits of southwest coast of India. J Coastal Res 34:154–163

    Google Scholar 

  • Lanci L, Hirt AM, Lowrie W, Lotter AF, Lemcke G, Sturm M (1999) Mineral-magnetic record of Late Quaternary climatic changes in a high Alpine lake. Earth Planet Sci Lett 170:49–59. doi:10.1016/S0012-821X(99)00098-9

    Article  Google Scholar 

  • Lees JA, Pethick JS (1995) Problems associated with quantitative magnetic sourcing of sediments of the Scarborough to Mablethorpe coast, Northeast England, U.K. Earth Surface Processesand Landforms 20(9):795–806. doi:10.1002/esp.3290200905

  • Lepland A, Stevens RL (1996) Mineral magnetic and textural interpretations of sedimentation in the Skagerrak, eastern North Sea. Mar Geol 135:51–64

    Article  Google Scholar 

  • Li L, Barry DA, Pattiaratchi CB, Masselink G (2002) Beach win: modeling groundwater effects on swash sediment transport and beach profile changes. Environ Model Softw 17:313–320

    Article  Google Scholar 

  • Maher BA, Hatfield RG (2009) Fingerprinting upland sediment sources: particle size-specific magnetic linkages between soils, lake- and suspended sediments. Earth Surf Proc Land 34:1359–1373

    Article  Google Scholar 

  • Maher BA, Kinnersley R (2010) Rates of particulate pollution deposition onto leaf surfaces:temporal and inter-species analyses. Environmental Pollution, p 10. doi:10.1016/j.envpol.2009.12.029

  • Maher BA, Kinnersley R (2011) Biomagnetic monitoring of industry-derived particulate pollution. Environ Pollut 159:1673–1681

    Article  Google Scholar 

  • Maher BA, Thompson R (1999) Quaternary climates, environments and magnetism. Cambridge UniversityPress

  • Maher BA, Pates JM, Barker PA (2008) Sediment dynamics in an upland temperate catchment: changing sediment sources, rates and deposition. J Paleolimnology 40:1143–1158

    Google Scholar 

  • Maher BA, Watkins SJ, Brunskill G, Alexander J, Fieldings CR (2009) Sediment provenance in a tropical fluvial and marine context by magnetic fingerprinting of transportable sand fractions. Sedimentology 5:841–861

    Article  Google Scholar 

  • Murad E, Schwertmann U (1993) Temporal stability of a finegrained magnetite. Clays Clay Miner 41:111–113

    Article  Google Scholar 

  • Oldfield F (1999a) Environmental magnetism; the range of applications. In: Walden J, Smith JP, Oldfield F (ed) Environmental magnetism, a practical guide, quaternary research association. Technical Guide 6:212–22

  • Oldfield F (1999b) The rock magnetic identification of magnetic mineral and grain size assemblages. In: Walden J, Smith JP, Oldfield F (ed) Environmental magnetism, a practical guide, quaternary research association. Technical Guide 6:98–112

  • Oldfield F, Richardson N (1990) Lake sediment magnetism and atmospheric deposition. Philos T R Soc B327:325–330

    Article  Google Scholar 

  • Oldfield F, Yu L (1994) The influence of particle size variations on the magnetic properties of sediments from the north-eastern Irish Sea. Sedimentology 41:1093–1108

    Article  Google Scholar 

  • Oldfield F, Maher BA, Donoghue J, Pierce J (1985) Particle size related, mineral magnetic source sediment linkages in the Rhode River catchment, Maryland, USA. J Geol Soc (London) 142:1035–1046

    Article  Google Scholar 

  • Oldfield F, Richardson N, Appleby PG, Yu L (1993) 241Am and 137Cs activity in fine grained salt marsh sediments from parts of the NE Irish Sea shoreline. J Environ Radioact 19:1–24

    Article  Google Scholar 

  • Oldfield F, Appleby PG, van der Post KD (1999) Problems of core correlation, sediment source ascription and yield estimation in Ponsonby Tarn, West Cumbria, UK. Earth Surf Processes Land 24:975–992

    Article  Google Scholar 

  • Petrovsky E, Kapicka A, Zapletal K, Sebestova E, Spanila T, Dekkers MJ (1998) Correlation between magnetic parameters and chemical composition of lake sediments from NorthernBohemia—Preliminary Study. Phys Chem Earth 23:1123–1126

    Article  Google Scholar 

  • Roberts AP, Chang L, Rowan CJ, Horng CS, Florindo F (2011) Magnetic properties of sedimentary greigite (Fe3S4): an update. Rev. Geophys. 49:RG1002

  • Schmidt AM, Von Dobeneck T, Bleil U (1999) Magnetic characterization of Holocene sedimentation in the South Atlantic. Palaeoceanography 14:465–481

    Article  Google Scholar 

  • Schwertmann U, Heinemann B (1959) Uber das Vorkommen und die Entstehung von Maghemit in nordwest deutschen Bo¨den, Neues Jahrb. Miner Monatsh 8:174–181

    Google Scholar 

  • Tandale TD (1993) Coastal environ of Maharashtra: evolution and human activities aided with satellite remote sensing. Photonirvachak 21(2):59–65

    Google Scholar 

  • Thompson R, Oldfield F (1986) Environmental Magnetism. Unwin and Allen, London

    Book  Google Scholar 

  • Turner GM (1997) Environmental magnetism and magnetic correlation of high resolution lake sediment records from Northern Hawke´s Bay, New Zealand. J Geol Geophys 40:287–298

    Article  Google Scholar 

  • van der Marel HW (1951) Ferric oxide in sediments. J Sed Petrol. 21:12–21

    Google Scholar 

  • Walden J, Smith JP, Dackombe RV, Rose J (1995) Mineral magnetic analyses of glacial diamicts from the Midland Valley of Scotland. Scott J Geol 31:79–89

    Article  Google Scholar 

  • Walden J, Slattery MC, Burt TP (1997) Use of mineral magnetic measurements to fingerprint suspended sediment sources: approaches and techniques for data analysis. J Hydrol 202:353–372

    Article  Google Scholar 

  • Walden J, Smith JP, Oldfield F (1999) Environmental magnetism, a practical guide. Quaternary research association. Technical Guide 6:243

  • Wheeler AJ, Oldfield F, Orford JD (1999) Sedimentology and postdepositional controls on magnetic signals from saltmarshes on the north-west coast of Ireland. Sedimentology 46:545–558

    Article  Google Scholar 

  • White K, Walden J, Drake N, Eckardt F, Settle J (1997) Mapping the iron oxide content of dune sands, Namib Sand Sea, Namibia, using Landsat Thematic Mapper data. Remote Sens Environ 62:30–39

    Article  Google Scholar 

  • Xie S, Dearing JA, Bloemandal J, Boyle JF (1999) Association between the organic matter content and magnetic properties in street dust, Liverpool, UK. Sci Total Environ 241:205–214

    Article  Google Scholar 

  • Xie S, Dearing JA, Bloemandal J (2000) The organic matter content of street dust in Liverpool, UK and its association with dust magnetic properties. Atmos Environ 34:225–269

    Article  Google Scholar 

  • Zhang W, Yu L, Hutchinson SM (2001) Diagenesis of magnetic minerals in the intertidal sediments of the Yangtze Estuary, China, and its environmental significance. Sci Total Environ 266:160–175

    Google Scholar 

Download references

Acknowledgments

Director, IIG, Prof. D. S. Ramesh is thanked for granting permission to publish this paper. PTH thanks the Department of Science and Technology, Government of India for financial support. We thank editor and reviewers for their critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkata Lakshmi Bandaru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandaru, V.L., Gawali, P.B., Hanamgond, P.T. et al. Heavy metal monitoring of beach sands through environmental magnetism technique: a case study from Vengurla and Aravali beaches of Sindhudurg district, Maharashtra, India. Environ Earth Sci 75, 678 (2016). https://doi.org/10.1007/s12665-016-5477-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5477-9

Keywords

Navigation