Skip to main content
Log in

Topographic effects on spatial pattern of surface air temperature in complex mountain environment

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Understanding topographic effects on surface air temperature (SAT) is essential in developing an accurate prediction model in complex mountain environment. A nonlinear topographic regression model is developed to predict the spatial SAT pattern using latitude, elevation, slope, and aspect. Monthly SAT data have been collected from 14 meteorological stations between 1960 and 2010 in the Daqing Mountains of China. Topographic data are acquired from a 30 m resolution digital elevation model of the study region. Results show that: (1) the SAT models are able to explain 89–95.8 % of the spatial variation in different months. Elevation has the strongest effect on the SAT variation in all months (average 84.78 %). (2) The combined contribution of slope and aspect to SAT variations is larger (average 9.14 %) than that of latitude (average 6.07 %). (3) The combined effect of slope and aspect on SAT variations is higher in winter than in summer. The introduction of slope and aspect optimizes the SAT modeling in different months. In further studies, the accuracy of SAT model might be improved by introducing alternative topographic factors to capture the vegetation and weather condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beek EG, Stein A, Janssen LLF (1992) Spatial variability and interpolation of daily precipitation amount. Stoch Hydrol Hydraul 6:304–320. doi:10.1007/BF01581451

    Article  Google Scholar 

  • Bolstad PV, Swift L, Collins F, Regniere J (1998) Measured and predicted air temperatures at basin to regional scales in the southern Appalachian mountains. Agric For Meteorol 91:161–176. doi:10.1016/S0168-1923(98)00076-8

    Article  Google Scholar 

  • Brown DP, Comrie AC (2002) Spatial modeling of winter temperature and precipitation in Arizona and New Mexico, USA. Clim Res 22:115–128. doi:10.3354/cr022115

    Article  Google Scholar 

  • Daly C, Neilson RP, Phillips DL (1994) A statistical topographic model for mapping climatological precipitation over mountainous terrain. J Appl Meteorol 33:140–158. doi:10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2

    Article  Google Scholar 

  • Daly C, Gibson WP, Taylor GH, Johnson GL, Pasteris P (2002) A knowledge-based approach to the statistical mapping of climate. Clim Res 22:99–113. doi:10.3354/cr022099

    Article  Google Scholar 

  • Dodson R, Marks D (1997) Daily air temperature interpolated at high spatial resolution over a large mountainous region. Clim Res 8:1–20

    Article  Google Scholar 

  • Dozier J, Frew J (1990) Rapid calculation of terrain parameters for radiation modeling from digital elevation data. IEEE Trans Geosci Remote Sens 28:963–969. doi:10.1109/36.58986

    Article  Google Scholar 

  • Efron B (1982) The Jackknife, the Bootstrap and other resampling plans, vol 38. Society for Industrial and Applied Mathematics, Philadelphia, USA, pp 49–59. doi:10.1137/1.9781611970319.ch7

  • Fang JY (1992) Study on the geographic elements affecting temperature distribution in China. Acta Ecol Sin 12:92–104

    Google Scholar 

  • Goodale CL, Aber JD, Ollinger SV (1998) Mapping monthly precipitation, temperature, and solar radiation for Ireland with polynomial regression and a digital elevation model. Clim Res 10:35–49

    Article  Google Scholar 

  • Hartmann DL, Maureen EO, Marc LM (1992) The effect of cloud type on Earth’s energy balance: global analysis. J Clim 5:1281–1304. doi:10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2

    Article  Google Scholar 

  • Holden ZA, Crimmins MA, Cushman SA, Littell JS (2011) Empirical modeling of spatial and temporal variation in warm season nocturnal air temperatures in two North Idaho mountain ranges, USA. Agric For Meteorol 151:261–269. doi:10.1016/j.agrformet.2010.10.006

    Article  Google Scholar 

  • Huang SB (1986) Advance in the investigation of the topographical microclimate in China. Geographical Research 5:90–101

    Google Scholar 

  • Kattel DB, Yao TD (2013) Recent temperature trends at mountain stations on the southern slope of the central Himalayas. J Earth Syst Sci 122:215–227. doi:10.1007/s12040-012-0257-8

    Article  Google Scholar 

  • Kattel DB, Yao TD, Yang W, Gao Y, Tian LD (2015) Comparison of temperature lapse rates from the northern to the southern slopes of the Himalayas. Int J Climatol. doi:10.1002/joc.4297

    Google Scholar 

  • King ML (1981) The alternative Durbin-Watson test–An assessment of Durbin and Watson choice of test statistic. J Econom 17:51–66. doi:10.1016/0304-4076(81)90058-0

    Article  Google Scholar 

  • Kumar L, Skidmore AK, Knowles E (1997) Modelling topographic variation in solar radiation in a GIS environment. Int J Geogr Inf Sci 11:475–497

    Article  Google Scholar 

  • Lattin JM, Carroll JD, Green PE (2003) Analyzing multivariate data (in Chinese). China Machine Press, Beijing

    Google Scholar 

  • Li HT, Shen WQ, Sang WG, Li JY (2001) Research situation and application of MTCLIM model. J Mt Sci 14:248–253

    Google Scholar 

  • Liu PG (1992) The vertical distribution patterns of higher fungus and their evaluation from the Mt. Daqing. Inner Mongolia. Mt Res 10:19–24

    Google Scholar 

  • Liu Y, Zou SB (2006) A study on the distributing climatic models in arid mountainous area-distributing temperature and precipitation models in high spatial resolution in the Qilian Mountains. J Lanzhou Univ 42:7–12

    Google Scholar 

  • Liu CM, Qian ZA, Wu MC, Song MH, Liu JT (2004) A composite study of the synoptic differences between major and minor dust storm springs over the China-Mongolia areas. Terr Atmos Ocean Sci 15:999–1018

    Google Scholar 

  • Lo YH, Blanco JA, Seely B, Welham C, Kimmins JP (2011) Generating reliable meteorological data in mountainous areas with scarce presence of weather records: the performance of MTCLIM in interior British Columbia, Canada. Environ Model Softw 26:644–657. doi:10.1016/j.envsoft.2010.11.005

    Article  Google Scholar 

  • Lookingbill TR, Urban DL (2003) Spatial estimation of air temperature differences for landscape-scale studies in montane environments. Agric For Meteorol 114:141–151. doi:10.1016/S0168-1923(02)00196-X

    Article  Google Scholar 

  • McKenney DW, Pedlar JH, Papadopol P, Hutchinson MF (2006) The development of 1901-2000 historical monthly climate models for Canada and the United States. Agric For Meteorol 138:69–81. doi:10.1016/j.agrformet.2006.03.012

    Article  Google Scholar 

  • Miao LJ, Jiang C, Xue BL, Liu Q, He B, Nath R, Cui XF (2015) Vegetation dynamics and factor analysis in arid and semi-arid Inner Mongolia. Environ Earth Sci 73:2343–2352. doi:10.1007/s12665-014-3582-1

    Article  Google Scholar 

  • Mote TL (2008) On the role of snow cover in depressing air temperature. J Appl Meteorol Climatol 47:2008–2022. doi:10.1175/2007JAMC1823.1

    Article  Google Scholar 

  • Ninyerola M, Pons X, Roure JM (2000) A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. Int J Climatol 20:1823–1841. doi:10.1002/1097-0088(20001130)20:14<1823:AID-JOC566>3.0.CO;2-B

    Article  Google Scholar 

  • Ollinger SV, Aber JD, Federer AC, Lovett GM, Ellis JM (1995) Modeling physical and chemical climate of the northeastern United States for a geographic information system. U.S. Forest Service General Technical Report NE-191, Radnor, PA, U.S. Department of Agriculture, p 30

  • Park S (2011) Integration of satellite-measured LST data into cokriging for temperature estimation on tropical and temperate islands. Int J Climatol 31:1653–1664. doi:10.1002/joc.2185

    Article  Google Scholar 

  • Running SW, Nemani RR, Hungerford RD (1987) Extrapolation of synoptic meteorological data in mountainous terrain and its use for simulating forest evapotranspiration and photosynthesis. Can J For Res 17:472–483

    Article  Google Scholar 

  • Shao J, Tu D (1995) The Jackknife and Bootstrap. Springer-Verlag, New York

    Book  Google Scholar 

  • Sun RH, Zhang BP, Tan J (2008) A multivariate regression model for precipitation estimation in the Daqing Mountains. Mt Res Dev 28:318–325. doi:10.1659/mrd.0944

    Article  Google Scholar 

  • Sun RH, Chen LD, Fu BJ (2011) Predicting monthly precipitation with multivariate regression methods using geographic and topographic information. Phys Geogr 32:269–285. doi:10.2747/0272-3646.32.3.269

    Article  Google Scholar 

  • Tao S, Fu C, Zeng Z, Zhang Q, Kaiser D (1991) Two long-term instrumental climatic data bases of the People’s Republic of China. Oak Ridge, TN, USA: Oak Ridge National Laboratory ORNL/CDIAC-47

  • Wallace J, Corr D, Kanaroglou P (2010) Topographic and spatial impacts of temperature inversions on air quality using mobile air pollution surveys. Sci Total Environ 408:5086–5096. doi:10.1016/j.scitotenv.2010.06.020

    Article  Google Scholar 

  • Wang L (1996) The temperature calculation model for the mountainous areas in North China and its application. J Nat Res 11:150–156

    Google Scholar 

  • Weng DM, Luo XZ (1990) Mountain climate (In Chinese). China Meteorological Press, Beijing

    Google Scholar 

  • Xu XT, Xie YW, Ma JH (2006) Modeling of temperature and precipitation distribution in Xinglong Mountain area. Remote Sens Technol Appl 21:317–321

    Google Scholar 

  • Yao YH, Zhang BP (2014) The mass elevation effect of the Tibetan Plateau and its implications for Alpine treelines. Int J Climatol Publ Online. doi:10.1002/joc.4123

    Google Scholar 

  • Zhang HL, Ni SX, Deng ZW, Chen Y, Zha Y (2002) A method of spatial simulating of temperature based digital elevation model (DEM) in mountain area. J Mt Sci 20:360–364

    Google Scholar 

  • Zhao CY, Nan ZR, Cheng GD (2005) Methods for modeling of temporal and spatial distribution of air temperature at landscape scale in the southern Qilian Mountains, China. Ecol Model 189:209–220. doi:10.1016/j.ecolmodel.2005.03.016

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous reviewers for providing fruitful suggestions to improve the manuscript. The work was financed by the National Natural Science Foundation of China (41471150; 41030528).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranhao Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, R., Zhang, B. Topographic effects on spatial pattern of surface air temperature in complex mountain environment. Environ Earth Sci 75, 621 (2016). https://doi.org/10.1007/s12665-016-5448-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5448-1

Keywords

Navigation