Caprock analysis from the Mihályi-Répcelak natural CO2 occurrence, Western Hungary

  • Csilla Király
  • Ágnes Szamosfalvi
  • László Zilahi-Sebess
  • Péter Kónya
  • István János Kovács
  • Eszter Sendula
  • Csaba SzabóEmail author
  • György Falus
Original Article


Caprock integrity is one of the most important factors regarding the long-term safe underground storage of CO2. As a result of geochemical reactions among the caprock mineralogy and CO2 saturated pore water, the physical properties of caprock such as porosity, permeability may change, which could affect its sealing capacity. Natural CO2 occurrences can help to understand these long term reactions under storage conditions on geological timescale. Our study area, the Mihályi-Répcelak natural CO2 occurrence, is believed to be leak-proof system on geological timescale. To identify and understand the mineral reactions in the caprocks we applied XRD, FTIR-ATR and SEM analysis of drill cores derived from the study area. The petrophysical properties of the studied rock samples were determined from the interpretation of geophysical well-logs and grain size distribution. The effective porosity (~4 %), permeability (0.026 mD) and clay content (~80 %) of the drill cores imply that the studied clayey caprocks represent an adequate physical barrier to the CO2. Our analytical results show that dawsonite has formed within the caprocks. In most cases the dawsonite crystallized after albite dissolution. This implies that CO2 or CO2-saturated brine can penetrate into the caprock resulting in mineral reactions and most likely changing the porosity and permeability of the sealing lithology. On the other hand the caprock may react as a geochemical buffer for the CO2 and, at least part of it, can be stored within the caprock as solid phase, thereby increasing the storage capacity of the system.


Natural CO2 occurrence Caprock analysis Physical properties Dawsonite Pannonian Basin 



The authors give thanks to the Hungarian Geological and Geophysical Institute and to Faculty of Science Research and Instrument Core Facility at Eötvös University (ELTE FS-RICF) for the use of analytical equipment. This research was supported by KMOP project nr. 4.2.1/B-10-2010-002 by the European Union and carried out in agreement between ELTE and MFGI (TTK 2461/1/2013 and MFGI 206-114/2013) with partial financing by the Hungarian—national Research Fund (K 115927 for Gy. Falus). The authors are grateful for co-operation of Zoltán Dankházi, Zoltán Szalai, Imre Magyar and Zsolt Bendő. This is the 81st publication of Lithosphere Fluid Research Lab at Eötvös University. This study was also supported by a Bolyai Postdoctoral Fellowship to IK.


  1. Alemu BL, Aagard P, Munz IA, Skurtveit E (2011) Caprock interaction with CO2: a laboratory study of reactivity of shale with supercritical CO2 and brine mixtures at 250 °C and 110 bars. Appl Geochem 26:1975–1989CrossRefGoogle Scholar
  2. Berthe G, Savoye S, Witterbroodt C, Michelo JL (2011) Effect of CO2-enriched fluid on three argillite type caprocks. In: Goldschmidt Conference, Prague, Czech RepublicGoogle Scholar
  3. Birkholzer J, Zhou Q (2009) Basin-scale hydrogeologic impacts of CO2 storage: capacity and regulatory implications. Int J Greenh Gas Control 3:745–756CrossRefGoogle Scholar
  4. Bonneville A, Gilmore T, Sullivan C, Vermeul V, Kelley M, White S, Appriou D, Bjornstad B Grest J, Gupta N, Horner J, McNiel C, Moody C, Rike W, Spane F, Thorne F, Zeller P, Zhang F, Hoffmann J, Humphreys K (2013) Evaluating the Suitability for CO2 Storage at the FutureGen 2.0 Site, Morgan County, Illinois, USA. Energy Procedia 37:6125–6132CrossRefGoogle Scholar
  5. Bruno MS, Lao K, Diessl J, Childers B, Xiang J, White N, van der Veer E (2014) Development of improved caprock integrity analysis and risk assessment techniques. Energy Procedia 63:4708–4744CrossRefGoogle Scholar
  6. Cook H E, Johnson P D, Matti J C, Zemmels I (1975) Methods of sample preparation and X-ray diffraction data analysis, X-ray Mineralogy Laboratory, Deep Sea Drilling Project, University of California, Riverside. In: Hayes D E, Frakes L A et al. (eds) Init. Repts. DSDP, 28: Washington (U.S. Govt. Printing Office), 999–1007. doi: 10.2973/dsdp.proc.28.app4.1975
  7. Credoz A, Bildstein O, Jullien M, Raynal J, Pétronin JC, Lillo M, Pozo C, Geniaut G (2009) Experimental and modelling study of geochemical reactivity between clayey caprocks and CO2 in geological storage conditions. Energy Procedia 1:3445–3452CrossRefGoogle Scholar
  8. Dövényi P, Horváth F, Liebe P, Gálfi J, Erki I (1983) Geothermal conditions of Hungary. Geophys Trans 29:3–114Google Scholar
  9. Farmer VC (1974) The infrared spectra of minerals. Mineralogical Society, London. ISBN 090-305-605-4, Mineralogical Society Monograph 4Google Scholar
  10. Gaus I (2010) Role and impact of CO2–rock interactions during CO2 storage in sedimentary rocks. Int J Greenh Gas Control 4:73–89CrossRefGoogle Scholar
  11. Griffith C A (2012) Physical Characteristics of Caprock Formations used for Geological Storage of CO2 and the Impact of Uncertainty in Fracture Properties in CO2 Transport through Fractured Caprocks. Dissertation, Carnegie Mellon UniversityGoogle Scholar
  12. Gy Juhász (1991) Lithostratigraphical and sedimentological framework of the Pannonian (s.l.) sedimentary sequence in the Hungarian Plain (Alföld), Eastern Hungary. Acta Geologica Hung 34:53–72Google Scholar
  13. Heath JE, Dewers TA, McPherson BJOL, Petrusak R, Chidsey TC, Rinehart AJ, Mozley PS (2011) Pore networks in continental and marine mudstones: characteristics and controls on sealing behavior. Geosphere 7:429–454CrossRefGoogle Scholar
  14. Kaldi J, Daniel R, Tenthorey E, Michael K, Schacht U, Nicol A, Underschultz J, Backe G (2011) Caprock systems for CO2 geological storage. IAEGHG Rep 2011(1):149Google Scholar
  15. Kaldi J, Daniel R, Tenthorey E, Michael K, Schacht U, Nicol A, Underschultz J, Backe G (2013) Containment of CO2 in CCS: role of Caprocks and Faults. Energy Procedia 37:5403–5410CrossRefGoogle Scholar
  16. Király Cs, Sendula E, Szamosfalvi Á, Káldos R, Kónya P, Kovács I J, Füri J, Bendő Zs, Falus Gy (2016) In: The relevance of dawsonite precipitation in CO2 sequestration in the Mihályi-Répcelak area, NW Hungary. Submitted to: Armitage et al. (Eds): Reservoir Quality of Clastic and Carbonate Rocks: Analysis, Modelling and Prediction. Geological Society, Special Publications, London (accepted) Google Scholar
  17. Kohler E, Parra T, Vidal O (2009) Clayey cap-rock behaviour in H2O-CO2 media at low pressure and temperature conditions: an experimental approach. Clays Clay Miner 57:616–637CrossRefGoogle Scholar
  18. KunleDare MA (2005) Petrographic investigation into the development of secondary porosity in sandstones: a case study of the Cambrian Mount Simon and Galesville Sandstones, Illinois Basin. Dissertation, University of Missouri-RollaGoogle Scholar
  19. Liu F, Lu P, Griffith C, Hedges SW, Soong Y, Hellevang H, Zhu C (2012) CO2–brine–caprock interaction: reactivity experiments on Eau Claire shale and review of relevant literature. Int Greenh Gas Control 7:153–167CrossRefGoogle Scholar
  20. Madejová J, Komadel P (2001) Baseline studies of the Clay Minerals Society source clays: infrared methods. Clays Clay Miner 49:410–432CrossRefGoogle Scholar
  21. Magyar I, Radivojeci D, Sztanó O, Synak R, Ujszászi K, Pócsik M (2013) Progradation of the paleo-Danube shelf margin across the Pannonian Basin during the Late Miocene and Early Pliocene. Glob Planet Change 103:168–173CrossRefGoogle Scholar
  22. Mészáros F, Zilahi-Sebess L (2001) Compaction of sediments with great thickness in the Pannonian Basin. Geophys Trans 44:21–48Google Scholar
  23. Mészáros L, Dallos Ernőné, Vágó Lászlóné, Czupi Jenőné, Paulik D, Darabos A, Marton T, Simán Gyuláné, Ferenczy Zoltánné (1979) Final report on the exploration phase and OGIP-calculation of non-combustible mixed gas reservoirs from the Mihályi exploration area. Országos Kőolajipari Tröszt, p 116 (in Hungarian)Google Scholar
  24. Navarre-Stichler A, Muouzakis K, Heath J, Dewers T, Rother G, Wang X, Kaszuba J, McCray J (2011) Changes to porosity and pore structure of mudstones resulting from reaction with CO2 and brine. In: Goldschmidt Conference, Prague, Czech RepublicGoogle Scholar
  25. Palcsu L, Vető I, Futó I, Vodila G, Papp L, Major Z (2014) In-reservoir mixing of mantle-derived CO2 and metasedimentary CH4-N2 fluids—noble gas and stable isotope study of two multistacked fields (Pannonian Basin System, W-Hungary). Mar Pet Geol 54:216–227CrossRefGoogle Scholar
  26. Pearce JM, Holloway S, Wacker H, Nelis MK, Rochelle C, Bateman K (1996) Natural occurrences as analogues for the geological disposal of carbon dioxide. Energy Convers Manag 37(6-8):1123–1128CrossRefGoogle Scholar
  27. Pearce JM, Shepherd TJ, Kemp SJ, Wagner D, Rochelle CA, Bouch JE, Nador A, Vető I, Baker J, Toth G, Lombardi S, Annuziatellis A, Beaubien SE, Ciotoli G, Pauwels H, Chernichowski-Lauriol I, Gaus I, Le Nindre YM, Girard JP, Serra H, Petelet-Giraud E, Guern-Marot C, Orlic B, Schroot B, Schutteenhelm A, hatziyannis G, Spyridonos E, Metaxas A, Brune S, Hagendorf J, Teschner M, Faber E, Poggenburg J, Iliffe J, Kroos BM, Alles A, Hildenbrand A, Heggland R 2005. Natural analogues for the geological storage of CO2, NASCENT projectGoogle Scholar
  28. Person M, Banerjee A, Rupp J, Medina C, Lichtner P, Gable C, Pawar R, Celia M, McIntosh J, Bense V (2010) Assessment of basin-scale hydrogeologic impacts of CO2 sequestration, Illinois basin. Int J Greenh Gas Control 4:840–854CrossRefGoogle Scholar
  29. Serna CJ, Garcia-Ramos JV, Pena MJ (1985) Vibrational study of dawsonite type compounds MAl(OH2)CO3 (M = Na, K, NH4). Spectrochim Acta 41A:697–702CrossRefGoogle Scholar
  30. Shukla R, Ranjith P, Haque A, Choi X (2010) A review of studies on CO2 sequestration and caprock integrity. Fuel 89:2651–2664CrossRefGoogle Scholar
  31. Stevens SH, Fox C, White T, Melzer S (2006) Natural CO2 analogues for Carbon Sequestration. Final Report for USDOE, p 159Google Scholar
  32. Streibel M, Finley R, Martens S, Greenberg S, Möller F, Liebscher A (2014) From Pilot to Demo Scale-Comparing Ketzin results with the Illinois Basin-Decatur Project. Energy Procedia 63:6323–6334CrossRefGoogle Scholar
  33. Szamosfalvi Á (2014) Re-interpretation of well-logging data of Mihályi-Répcelak natural CO2 site considering the conditions of carbon dioxide geological. Dissertation, University of Miskolc (in Hungarian)Google Scholar
  34. Tóth J, Udvardi B, Kovács I, Gy Falus, Cs Szabó, Troskot-Čorbić T, Slavković R (2012) Analytical development in FTIR analysis of clay minerals. MOL Sci Mag 1:52–61Google Scholar
  35. Udvardi B, Kovács IJ, Kónya P, Földvári M, Füri J, Budai F, Gy Falus, Fancsik T, Cs Szabó, Szalai Z, Mihály J (2014) Application of attenuated total reflectance Fourier transform infrared spectroscopy in the mineralogical study of a landslide area, Hungary. Sed Geol 313:1–14CrossRefGoogle Scholar
  36. Vető I, Csizmeg J, Cs Sajgó (2014) Accumulation and mixing of magmatic CO2 and hydrocarbon–nitrogen gas in the southern Danube Basin. Cent Eur Geol 57(1):53–69CrossRefGoogle Scholar
  37. Zilahi-Sebess L (2008) Development of Petrophysical Methods 2008. ELGI Annual Report (in Hungarian)Google Scholar
  38. Zilahi-Sebess L (2009) The methodology and tools of porosity, permeability and rock density geophysical estimation. State-of Art Study, p 113 (in Hungarian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Csilla Király
    • 1
  • Ágnes Szamosfalvi
    • 2
  • László Zilahi-Sebess
    • 2
  • Péter Kónya
    • 2
  • István János Kovács
    • 2
  • Eszter Sendula
    • 1
  • Csaba Szabó
    • 1
    Email author
  • György Falus
    • 2
  1. 1.Lithosphere Fluid Research LabEötvös UniversityBudapestHungary
  2. 2.Geological and Geophysical Institute of HungaryBudapestHungary

Personalised recommendations