Advertisement

Environmental impact in a rural community due to a lead recycling plant in Zacatecas, Mexico

  • Miguel Angel Salas-LuevanoEmail author
  • Hector Rene Vega-Carrillo
Original Article

Abstract

A study was conducted to determine the concentrations of lead in soil and plants samples due to the exposure of emission from a metal-recycling plant in a rural community in Zacatecas, Mexico. The lead levels in the soils were determined as having cultivated crops, medicinal plants, and wild plants. Also, other potential sources of lead exposure, as firewood, a cooking glazed vessel, and soils from three houses were analyzed. Samples were analyzed with the energy dispersive X-ray technique. The average lead soil sample was 4940 µg/g, and the Pb average levels in firewood ashes was 207 ± 73 μg/g. The mean lead concentrations in edible parts of Zea mays, Capsicum annuum, and Avena sativa were 1551, 1474, and 1056 μg/g, respectively. Wild plants species showed very high lead concentration especially Acacia schaffneri, Buddleja scordioides, Tillandsia recurvata, Opuntia streptacantha and Amaranthus hybridus. The lead contamination path was through the emission of the metal-recycling plant.

Keywords

Lead Metal-recycling plant Glazing pottery Crops Endemic plants México 

Notes

Compliance with ethical standards

Conflict of interest

None.

References

  1. ANZFA (2013) Australia New Zealand Food Standards Code. Standard 1.4.1 Contaminants and natural toxicants. http://www.foodstandards.gov.au/foodstandardscode/. Accessed 24 Jun 2013
  2. Armienta MA, Ongley LK, Rodríguez R, Cruz O, Mango H, Villaseñor G (2008) Arsenic distribution in mesquite (Prosopis laevigata) and huizache (Acacia farnesiana) in the Zimapán mining area, México. Geochem Expl Environ Anal 8:191–197CrossRefGoogle Scholar
  3. Baker AJM, Whiting SN (2002) In search of the holy grail—a further step in understanding metal hyperaccumulation. New Phytol 155:1–7CrossRefGoogle Scholar
  4. Brix H (1994) Functions of macrophytes in constructed wetlands. Water Sci Technol 29:171–178Google Scholar
  5. CEC (2001) Commission of the European Communities-Commission Regulation (EC), No. 466/2001 of 8 March 2001 setting maximum levels for certain contaminants in foodstuffs’. Of J Eur Commun L77:01–13Google Scholar
  6. Chon HT, Kim KW, Kim JY (1995) Metal contamination of soils and dusts in Seoul metropolitan city, Korea. Environ Geochem Health 17:139–146CrossRefGoogle Scholar
  7. Colbourn P, Thornton I (1978) Lead pollution in agricultural soils. J Soil Sci 29:513–526CrossRefGoogle Scholar
  8. Dahl J, Obernberger I (2002) Technical and Biological database. Appendix B1, The market implication of integrated management for heavy metals flows for bioenergy use in the European Union. In: M. Johannesson M, et al. (eds). Kalmar University, Department of Biology and Environmental Science, Kalmar, Sweden, p 62Google Scholar
  9. Díaz-Barriga F, Santos MA, Mejía JJ, Batres L, Yáñez L, Carrizales L, Vera E, del Razo LM, Cebrián ME (1993) Arsenic and cadmium exposure in children living near a smelter complex in San Luis Potosi, Mexico. Environ Res 62:242–250CrossRefGoogle Scholar
  10. Giordano S, Sorbo S, Adamo P, Basile A, Spagnuolo V, Castaldo-Cobianchi R (2004) Biodiversity and trace element content of epiphytic bryophytes in urban and extraurban sites of southern Italy. Plant Ecol 170:1–14CrossRefGoogle Scholar
  11. Gulson BL, Mizon KJ, Davis JD, Palmer JM, Vimpani G (2004) Identification of sources of lead in children in a primary zinc–lead smelter environment. Environ Health Perspect 112:52–60CrossRefGoogle Scholar
  12. Guttormsen G, Singh BR, Jeng AS (1995) Cadmium concentration in the vegetables crops grown in sandy soils as affected by Cd levels in fertilizer and soil Ph. Fertil Res 41:27–32CrossRefGoogle Scholar
  13. Han WY, Zhao FJ, Shi YZ, Ma LF, Rua JY (2006) Scale and causes of lead contamination in Chinese tea. Environ Pollut 139:125–132CrossRefGoogle Scholar
  14. Hernberg S (2000) Lead poisoning in a historical perspective. Am J Ind Med 38:244–254CrossRefGoogle Scholar
  15. Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC Press, Boca RatonGoogle Scholar
  16. Kachenko AG, Singh B (2006) Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water Air Soil Pollut 169:101–123CrossRefGoogle Scholar
  17. Kim S, Lim H, Lee I (2010) Enhanced heavy metal phytoextraction by Echinochloa crus-galli using root exudate. J Biosci Bioeng 109:47–50CrossRefGoogle Scholar
  18. Liu J, Dong Y, Xu H, Wang D, Xu J (2007) Accumulation of Cd, Pb and Zn by 19 wetland plant species in constructed wetland. J Hazard Mater 147:947–953CrossRefGoogle Scholar
  19. Lokeshwari H, Chandrappa GT (2006) Impact of heavy metal contamination of Bellandur Lake on soil and cultivated vegetation. Curr Sci 91:622–627Google Scholar
  20. Mendez MO, Maier RM (2008) Phytoremediation of mine tailings in temperate and arid environments. Rev Environ Sci Biotechnol 7:47–59CrossRefGoogle Scholar
  21. Nefzaoui A, Salem HB (2002) Cacti: efficient tool for rangeland rehabilitation, drought mitigation and to combat desertification. Acta Hortic 581:295–315CrossRefGoogle Scholar
  22. Nunes KP, Munita CS, Vasconcellos MBA, Oliveira PMS, Croci CA, Faleiros FM (2009) Characterization of soil samples according to their metal content. J Radioanal Nucl Chem 281:359–363CrossRefGoogle Scholar
  23. OECD (1993) Risk reduction, monograph No. 1: LEAD—background and national experience with reducing risk. OECD Environment Directorate, Environmental Health and Safety Division, ParisGoogle Scholar
  24. Önorm L (1990) Ausgewählte Richtwerte von anorganischen Schadelementen in landwirtschaftlich und gärtnerisch genutzten Böden, guideline, Austrian Institute for Standardization, Ed., Vienna, AustriaGoogle Scholar
  25. Reimann C, Ottesen RT, Andersson M, Arnoldussen A, Koller E, Englmaier P (2008) Element levels in birch and spruce wood ashes—green energy? Sci Total Environ 393:191–197CrossRefGoogle Scholar
  26. Rojas-López M, Santos-Burgoa C, Ríos C, Hernández-Avila M, Romieu I (1994) Use of lead-glazed ceramics is the main factor associated to high lead in blood levels in two Mexican rural communities. J Toxicol Environ Health Part A 42:45–52CrossRefGoogle Scholar
  27. Romieu I, Palazuelos E, Hernandez-Avila M, Ríos C, Muñoz I, Jimenez C, Cahero G (1994) Sources of lead exposure in Mexico City. Environ Health Perspect 102:384–389CrossRefGoogle Scholar
  28. Salas-Luevano MA, Manzanares-Acuña E, Letechipia-de Leon E, Vega-Carrillo HR (2009) Tolerant and hyperaccumulators autochthonous plant species from mine tailing disposal sites. Asian J Exp Sci 23:27–32Google Scholar
  29. Salas-Luevano MA, Manzanares-Acuña E, Letechipia-de Leon C, Hernandez-Davila VM, Vega-Carrillo HR (2011) Lead concentration in soil from an old mining town. J Radioanal Nucl Chem 289:135–139CrossRefGoogle Scholar
  30. Schröder W, Pesch R (2004) Spatial analysis and indicator building for metal accumulation in mosses. Environ Monit Assess 98:131–155CrossRefGoogle Scholar
  31. SEMARNAT (2002) Norma Oficial Mexicana NOM-021-SEMARNAT-2000. Diario Oficial, Secretaría de Medio Ambiente y Recursos NaturalesGoogle Scholar
  32. Szalóki I, Braun M, Grieken RV (2000) Quantitative characterisation of the leaching of lead and other elements from glazed surfaces of historical ceramics. J Anal At Spectrom 15:843–850CrossRefGoogle Scholar
  33. UNAM (2009) Biblioteca Digital de la Medicina Tradicional Mexicana, Universidad Nacional Autónoma de México. http://www.medicinatradicionalmexicana.unam.mx/index.php. Accessed 17 Apr 2014
  34. Valdés PF, Cabrera MVM (1999) La contaminación por metales pesados en Torreón, Coahuila, Mexico. Texas Center for Policy Studies. CILADHAC (Ciudadanía Lagunera por los Derechos Humanos, A.C.). En Defensa del Ambiente, A.CGoogle Scholar
  35. Vibrans H (2014) Malezas de México. http://www.conabio.gob.mx/malezasdemexico/2inicio/home-malezas-mexico.htm. Accessed 17 Apr 2014
  36. Vigueras GAL, Portillo L (2001) Uses of Opuntia species and the potential impact of Cactoblastis cactorum (Lepidoptera: Pyralidae) in Mexico. Fla Entomol 84:493–498CrossRefGoogle Scholar
  37. WHO (2004). Codex Committee on food Additives and Contaminants, World Health Organization, Rotterdam, The Netherlands. http://www.codexalimentarius.org/. Accessed 22 May 2013
  38. WHO (2005) Quality control methods for medicinal plant materials—revised draft update, World Health Organization. Working document QAS/05.131/Rev.1Google Scholar
  39. Zhuang P, Zou B, Li Y, Li ZA (2009) Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China: implication for human health. Environ Geochem Health 31:707–715CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Miguel Angel Salas-Luevano
    • 1
    Email author
  • Hector Rene Vega-Carrillo
    • 2
  1. 1.Unidad Académica de Agronomía, Universidad Autónoma de ZacatecasZacatecasMexico
  2. 2.Unidad Académica de Estudios Nucleares, Universidad Autónoma de ZacatecasZacatecasMexico

Personalised recommendations