Skip to main content
Log in

Monitoring of mercury and other metals mobility by sequential fractionation in soils nearby an abandoned chlor-alkali plant in Managua (Nicaragua)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Lake Xolotlán (Nicaragua) is an important industrial area including heavy industries such as a fuel refinery and numerous industries that discharge their effluents to the lake. Mercury distribution was studied in soil samples from six different sites close to an old chlor-alkali plant (CAP) which has historically released mercury wastes to the lake and its surroundings. A Hg-specific sequential extraction procedure was used to assess Hg partitioning. Hg content was subdivided in operationally defined fractions named as labile mercury species, humic and fulvic complexes, elemental Hg and bound to crystalline oxides and bound to sulphide Hg and refractory species. The total mercury concentrations ranged between 1 and 123 mg kg−1. Sequential extractions revealed that both humic and fulvic complexes and elemental Hg constituted the major forms of mercury in the most samples. Both fractions are related with the accumulation of mercury from both atmospheric deposition and sewage outflow. Moreover, accumulation of the elemental Hg in these soils decreased with the increasing distance from the CAP. In addition, the study of the distribution of other elements revealed a remarkable availability of Al, Ba, Ca, Fe, Pb, Sr, V and Zn that are commonly related to petroleum treatment and combustion. This suggests that these soils are also affected by the releasing of other pollutants from a nearby refinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adaikpoh EO (2011) Metal fractionation in soil profiles in Umutu oil field, Northwest Niger Delta Nigeria. Int J Chem 3:57–67. doi:10.5539/ijc.v3n1p57

    Article  Google Scholar 

  • Beccaluva L, Digirolamo P, Serri G (1991) Petrogenesis and tectonic setting of the Roman volcanic province, Italy. Lithos 26:191–221. doi:10.1016/0024-4937(91)90029-k

    Article  Google Scholar 

  • Biester H, Gosar M, Muller G (1999) Mercury speciation in tailings of the Idrija mercury mine. J Geochem Explor 65:195–204. doi:10.1016/S0375-6742(99)00027-8

    Article  Google Scholar 

  • Biester H, Muller G, Scholer HF (2002) Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants. Sci Total Environ 284:191–203. doi:10.1016/S0048-9697(01)00885-3

    Article  Google Scholar 

  • Bloom NS, Preus E, Katon J, Hiltner M (2003) Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Anal Chim Acta 479:233–248. doi:10.1016/s0003-2670(02)01550-7

    Article  Google Scholar 

  • Cherniak DJ, Watson EB (1994) A study of strontium difussion in plagioclase using a Rutherford backscattering spectroscopy. Geochim Cosmochim Acta 58:5179–5190. doi:10.1016/0016-7037(94)90303-4

    Article  Google Scholar 

  • Chon HT, Ahn JS, Jung MC (1998) Seasonal variations and chemical forms of heavy metals in soils and dusts from the satellite cities of Seoul, Korea. Environ Geochem Health 20:77–86. doi:10.1023/a:1006593708464

    Article  Google Scholar 

  • Climate-Nicaragua (2015). http://www.climatestotravel.com/Climate/Nicaragua. Accessed 15 Nov 2015

  • Colombo MJ, Ha JY, Reinfelder JR, Barkay T, Yee N (2013) Anaerobic oxidation of Hg(0) and methylmercury formation by Desulfovibrio desulfuricans ND132. Geochim Cosmochim Acta 112:166–177. doi:10.1016/j.gca.2013.03.001

    Article  Google Scholar 

  • Di Palma L, Mancini D, Petrucci E (2012) Experimental assessment of chromium mobilization from polluted soil by washing. In: Bosicon 2012: 3rd international conference on contaminated sites remediation, vol 28. Chemical Engineering Transactions, pp 145–150. doi:10.3303/cet1228025

  • Digiulio RT, Ryan EA (1987) Mercury in soils, sediments, and clams from a North-Carolina peatland. Water Air Soil Pollut 33:205–219. doi:10.1007/BF00191389

    Article  Google Scholar 

  • Ebinghaus R et al (1999) International field intercomparison measurements of atmospheric mercury species at Mace Head, Ireland. Atmos Environ 33:3063–3073. doi:10.1016/s1352-2310(98)00119-8

    Article  Google Scholar 

  • Erzen NK, Stupar J (2003) Fractionation of chromium in soils treated with aqueous solutions of Cr(VI) and Cr(III). Acta Chim Slov 50:67–81. doi:10.1039/A909597G

    Google Scholar 

  • Fernández-Martínez R (2006) Desarrollo y aplicación de nuevas metodologías para el estudio del fraccionamiento y movilidad del mercurio en muestras medioambientales. Thesis Dissertation, Universidad Autónoma de Madrid

  • Fernandez-Martinez R, Rucandio I (2013) Assessment of a sequential extraction method to evaluate mercury mobility and geochemistry in solid environmental samples. Ecotoxicol Environ Saf 97(196–203):2013. doi:10.1016/j.ecoenv.07.013

    Google Scholar 

  • Fernandez-Martinez R, Rucandio I (2014) Total mercury, organic mercury and mercury fractionation in soil profiles from the Almaden mercury mine area. Environ Sci Processes Impacts 16:333–340. doi:10.1039/c3em00445g

    Article  Google Scholar 

  • Feyte S, Tessier A, Gobeil C, Cossa D (2010) In situ adsorption of mercury, methylmercury and other elements by iron oxyhydroxides and organic matter in lake sediments. Appl Geochem 25:984–995. doi:10.1016/j.apgeochem.2010.04.005

    Article  Google Scholar 

  • Frentiu T, Pintican BP, Butaciu S, Mihaltan AI, Ponta M, Frentiu M (2013) Determination, speciation and distribution of mercury in soil in the surroundings of a former chlor-alkali plant: assessment of sequential extraction procedure and analytical technique. Chem Cent J 7:178. doi:10.1186/1752-153x-7-178

    Article  Google Scholar 

  • Fuhrmann M, Melamed D, Kalb PD, Adams JW, Milian LW (2002) Sulfur polymer solidification/stabilization of elemental mercury waste. Waste Manag 22:327–333. doi:10.1016/s0956-053x(01)00057-5

    Article  Google Scholar 

  • Fytianos K, Lourantou A (2004) Speciation of elements in sediment samples collected at lakes Volvi and Koronia, N. Greece. Environ Int 30:11–17. doi:10.1016/s0160-4120(03)00143-0

    Article  Google Scholar 

  • Garron C, Gagne F, Ernst W, Julien G, Bernier M, Caldwell C (2005) Mercury contamination of marine sediments and blue mussels (Mytilus edulis) in the vicinity of a mercury cell chlor-alkali plant in Dalhousie, New Brunswick, Canada. Water Qual Res J Can 40:1–15

    Google Scholar 

  • Gray JE, Hines ME, Higueras PL, Adatto I, Lasorsa BK (2004) Mercury speciation and microbial transformations in mine wastes, stream sediments, and surface waters at the Almaden Mining District, Spain. Environ Sci Technol 38:4285–4292. doi:10.1021/es040359d

    Article  Google Scholar 

  • Groen JC, Craig JR (1994) The inorganic geochemistry of coal, petroleum, and their gasification/combustion products. Fuel Process Technol 40:15–48. doi:10.1016/0378-3820(94)90033-7

    Article  Google Scholar 

  • Han Y et al (2003) Speciation of mercury in soil and sediment by selective solvent and acid extraction. Anal Bioanal Chem 375:428–436. doi:10.1007/s00216-002-1701-4

    Google Scholar 

  • Hassan A et al (1981) Mercury-poisoning in Nicaragua—a case study of the export of environmental and occupational-health hazards by a Multinational-Corporation. Int J Health Serv 11:221–226. doi:10.2190/n9y9-ymu2-d6r1-lpyp

    Article  Google Scholar 

  • Hintelmann H, Wilken RD (1995) Levels of total and methylmercury compounds in sediments of the pôlluted Elbe River—influence of seasonally and spatially varying environmental-factors. Sci Total Environ 166:1–10. doi:10.1016/0048-9697(95)04506-v

    Article  Google Scholar 

  • Hissler C, Probst JL (2006) Impact of mercury atmospheric deposition on soils and streams in a mountainous catchment (Vosges, France) polluted by chlor-alkali industrial activity: the important trapping role of the organic matter. Sci Total Environ 361:163–178. doi:10.1016/j.scitotenv.2005.05.023

    Article  Google Scholar 

  • Hu HY et al (2013) Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria. Nat Geosci 6:751–754. doi:10.1038/ngeo1894

    Article  Google Scholar 

  • Imperato M, Adamo P, Naimo D, Arienzo M, Stanzione D, Violante P (2003) Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environ Pollut 124:247–256. doi:10.1016/s0269-7491(02)00478-5

    Article  Google Scholar 

  • Jang M, Hwang JS, Choi SI, Park JK (2005) Remediation of arsenic-contaminated soils and washing effluents. Chemosphere 60:344–354. doi:10.1016/j.chemosphere.2004.12.018

    Article  Google Scholar 

  • Kabala C, Singh RR (2001) Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter. J Environ Qual 30:485–492. doi:10.2134/jeq2001.302485x

    Article  Google Scholar 

  • Kabata-Pendías APH (ed) (1992) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Lacayo M, Cruz A, Lacayo J, Fomsgaard I (1991) Mercury contamination in Lake Xolotlan (Nicaragua) In: International association of theoretical and applied limnology—proceedings, Vol 24, Pt 2, vol 24. International Association of Theoretical and Applied Limnology—Proceedings, pp 1174–1177

  • Li JH, Lu Y, Shim HJ, Deng XL, Lian J, Jia ZL, Li JH (2010) Use of the BCR sequential extraction procedure for the study of metal availability to plants. J Environ Monit 12:466–471. doi:10.1039/b916389a

    Article  Google Scholar 

  • Mahanta MJ, Bhattacharyya KG (2011) Total concentrations, fractionation and mobility of heavy metals in soils of urban area of Guwahati, India. Environ Monit Assess 173:221–240. doi:10.1007/s10661-010-1383-x

    Article  Google Scholar 

  • Martian-Doimeadios RCR, Wasserman JC, Bermejo LFG, Amouroux D, Nevado JJB, Donard OFX (2000) Chemical availability of mercury in stream sediments from the Almaden area, Spain. J Environ Monit 2:360–366

    Article  Google Scholar 

  • McCrary JK, Castro M, McKaye KR (2006) Mercury in fish from two Nicaraguan lakes: a recommendation for increased monitoring of fish for international commerce. Environ Pollut 141:513–518. doi:10.1016/j.envpol.2005.08.062

    Article  Google Scholar 

  • Mester Z, Cremisini C, Ghiara E, Morabito R (1998) Comparison of two sequential extraction procedures for metal fractionation in sediment samples. Anal Chim Acta 359:133–142. doi:10.1016/S0003-2670(97)00687-9

    Article  Google Scholar 

  • Muller K, Daus B, Morgenstern P, Wennrich R (2007) Mobilization of antimony and arsenic in soil and sediment samples—evaluation of different leaching procedures. Water Air Soil Pollut 183:427–436. doi:10.1007/s11270-007-9391-3

    Article  Google Scholar 

  • Musta B, Fitria H, Soehady W, Tahir S (2008) Geochemical characterization of volcanic soils from Tawau, Sabah. Bull Geol Soc Malaisya 54:33–36. doi:10.7186/bgsm2008006

    Google Scholar 

  • Neculita CM, Zagury GJ, Deschenes L (2005) Mercury speciation in highly contaminated soils from chlor-alkali plants using chemical extractions. J Environ Qual 34:255–262. doi:10.2134/jeq2005.0255

    Google Scholar 

  • Panyametheekul S (2004) An operationally defined method to determine the speciation of mercury. Environ Geochem Health 26:51–57. doi:10.1023/B:EGAH.0000020967.03217.5f

    Article  Google Scholar 

  • Ramos L, Hernandez LM, Gonzalez MJ (1994) Sequential fractionation of copper, lead, cadmium and zinc in soils from or near Donana-National-Park. J Environ Qual 23:50–57. doi:10.2134/jeq1994.00472425002300010009x

    Article  Google Scholar 

  • Reis AT, Rodrigues SM, Davidson CM, Pereira E, Duarte AC (2010) Extractability and mobility of mercury from agricultural soils surrounding industrial and mining contaminated areas. Chemosphere 81(1369–1377):2010. doi:10.1016/j.chemosphere.09.030

    Google Scholar 

  • Revis NW, Osborne TR, Sedgley D, King A (1989) Quantitative method for determining the concentration of mercury(II) sulfide in soils and sediments. Analyst 114:823–825. doi:10.1039/AN9891400823

    Article  Google Scholar 

  • Ruggieri F et al (2012) Contribution of volcanic ashes to the regional geochemical balance: the 2008 eruption of Chaiten volcano, Southern Chile. Sci Total Environ 425:75–88. doi:10.1016/j.scitotenv.2012.03.011

    Article  Google Scholar 

  • Sakamoto H, Tomiyasu T, Yonehara N (1992) Differential determination of organic mercury, mercury(II) oxide and mercury(II) sulfide in sediments by cold vapor atomic-absorption spectrometry. Anal Sci 8:35–39

    Article  Google Scholar 

  • Shoji S, Nanzyo M, Dahlgren RA (1994) Volcanic ash soils: genesis, properties and utilization. Elsevier, Amsterdam

    Google Scholar 

  • Sowder AG, Bertsch PM, Morris PJ (2003) Partitioning and availability of uranium and nickel in contaminated riparian sediments. J Environ Qual 32:885–898. doi:10.2134/jeq2003.8850

    Article  Google Scholar 

  • Stevenson JWL (ed) (1982) Humus chemistry: genesis, composition, reactions. Wiley, New York

    Google Scholar 

  • Stockdale A, Davison W, Zhang H, Hamilton-Taylor J (2010) The association of cobalt with iron and manganese (oxyhydr)oxides in marine sediment. Aquat Geochem 16:575–585. doi:10.1007/s10498-010-9092-1

    Article  Google Scholar 

  • Tongtavee N, Shiowatana J, McLaren RG, Buanuam J (2005) Evaluation of distribution and chemical associations between cobalt and manganese in soils by continuous-flow sequential extraction. Commun Soil Sci Plant Anal 36:2839–2855. doi:10.1080/00103620500306023

    Article  Google Scholar 

  • USEPA (1997) Mercury study report to congress. Volume III: Fate and transport of mercury in the Environment Office of Air Quality Planning and Standards. US Environmental Protection Agency (USEPA), Washington, DC

  • Wyrick B (1981) Chemical plant’s poison inflames a nation, part VIII: hazards for export. Newsday, USA

    Google Scholar 

  • Xiao WD, Zhang YB, Li TQ, Chen B, Wang H, He ZL, Yang XE (2012) Reduction kinetics of hexavalent chromium in soils and its correlation with soil properties. J Environ Qual 41:1452–1458. doi:10.2134/jeq2012.0061

    Article  Google Scholar 

  • Yuan CG, Shi JB, He B, Liu JF, Liang LN, Jiang GB (2004) Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environ Int 30:769–783. doi:10.1016/j.envint.2004.01.001

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Miguel Ángel Labajo for SEM-EDX measurements and the staff of the Chemistry Division at CIEMAT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Rucandio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Martínez, R., Gómez-Mancebo, B., Peña, E.J. et al. Monitoring of mercury and other metals mobility by sequential fractionation in soils nearby an abandoned chlor-alkali plant in Managua (Nicaragua). Environ Earth Sci 75, 538 (2016). https://doi.org/10.1007/s12665-015-5171-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-5171-3

Keywords

Navigation