Skip to main content

Advertisement

Log in

First level seismic microzonation map of Al-Madinah province, western Saudi Arabia using the geographic information system approach

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The identification of natural hazard prone areas for future planning requires an efficient decision support tool to provide the appropriate weights for the various topographical, geological, and seismological factors responsible for the expected hazards. In the present study, an analytical hierarchy process (AHP) with six earthquake hazard parameters (EHPs) was used as a decision support system for the identification of earthquake triggered hazards in the Al-Madinah region of the Kingdom of Saudi Arabia. The pairwise comparison matrix and the final weights for all the EHPs during the implementation of AHP were calculated with an acceptable limit of consistency ratio. A GIS-based integrated analysis was carried out on all the selected attributes to generate the final hazard and microzonation map. From the analysis, it was observed that 15 % of the region fall under a very high or high hazard category. The very high seismic hazard zone is located in the northwestern region of Al-Madinah province, while the eastern and southern regions show low to very low hazard. The result of the study may be used as a first-level hazard and reliability map in selecting the appropriate earthquake resistant sites in designing the forthcoming new buildings against the potential seismic hazard of the province.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdel-Fattah A, Al-Amri A, Fnais M (2014) Estimation of source parameters and attenuation using digital waveforms of Al-Ays 2009 earthquake, Saudi Arabia. Arab J Geosci 7:3325–3337

    Article  Google Scholar 

  • Akin MK, Topal T, Kramer SL (2013) A newly developed seismic microzonation model of Erbaa (Tokat, Turkey) located on seismically active eastern segment of the North Anatolian Fault Zone (NAFZ). Nat Hazards 65:1411–1442

    Article  Google Scholar 

  • Akkar S, Bommer JJ (2010) Empirical equations for the prediction of PGA, PGV, and spectral accelerations in Europe, the Mediterranean region, and the Middle East. Seismol Res Lett 81:195–206

    Article  Google Scholar 

  • Akkar S, Sandıkkaya M, Bommer J (2014) Empirical ground-motion models for point-and extended-source crustal earthquake scenarios in Europe and the Middle East. Bull Earthq Eng 12:359–387

    Article  Google Scholar 

  • Al-Ahmadi K, Al-Amri A, See L (2014) A spatial statistical analysis of the occurrence of earthquakes along the Red Sea floor spreading: clusters of seismicity. Arab J Geosci 7:2893–2904. doi:10.1007/s12517-013-0974-6

    Article  Google Scholar 

  • Al-Amri AM (2013) Seismotectonics and seismogenic source zones of the Arabian platform. In: Lithosphere dynamics and sedimentary basins: the Arabian plate and analogues. Springer, Berlin, Heidelberg, pp 295–316

    Chapter  Google Scholar 

  • Al-Amri AM, Rodgers AJ (2013) Improvement of seismicity parameters in the Arabian Shield and Platform using earthquake location and magnitude calibration. In: Lithosphere dynamics and sedimentary basins: the Arabian plate and analogues. Springer, Berlin, Heidelberg, pp 281–293

  • Al-Arifi NS, Fat-Helbary R, Khalil AR, Lashin AA (2013) A new evaluation of seismic hazard for the northwestern part of Saudi Arabia. Nat Hazards 69:1435–1457

    Article  Google Scholar 

  • Aldamegh KS, Elenean KA, Hussein H, Rodgers A (2009) Source mechanisms of the June 2004 Tabuk earthquake sequence, Eastern Red Sea margin, Kingdom of Saudi Arabia. J Seismol 13:561–576

    Article  Google Scholar 

  • Aldamegh KS, Moussa HH, Al-Arifi SN, Moustafa SS, Moustafa MH (2012) Focal mechanism of Badr earthquake, Saudia Arabia of August 27, 2009. Arab J Geosci 5:599–606

    Article  Google Scholar 

  • Al-Haddad M, Siddiqi G, Al-Zaid R, Arafah A, Necioglu A, Turkelli N (1994) A basis for evaluation of seismic hazard and design criteria for Saudi Arabia. Earthq Spectra 10:231–258

    Article  Google Scholar 

  • Allen TI, Wald DJ (2009) On the use of high-resolution topographic data as a proxy for seismic site conditions (VS30). Bull Seismol Soc Am 99:935–943

    Article  Google Scholar 

  • Al-Malki M, Al-Amri A (2013) Seismic zones regionalization and hazard assessment of SW Arabian Shield and Southern Red Sea Region. In: Lithosphere dynamics and sedimentary basins: the Arabian plate and analogues. Springer, Berlin, Heidelberg, pp 317–331

    Chapter  Google Scholar 

  • Al-Malki M, Fnais M, Al-Amri A, Abdelrahman K (2014) Estimation of fundamental frequency in Dammam City, Eastern Saudi Arabia. Arab J Geosci 8:2283–2298. doi:10.1007/s12517-014-1337-7

    Article  Google Scholar 

  • Alyousef K, Aldamegh K, Abdelrahman K, Loni O, Saud R, Al-Amri A, Fnais M (2014) Evaluation of site response characteristics of King Abdulaziz City for Science and Technology, Saudi Arabia using microtremors and geotechnical data. Arab J Geosci. doi:10.1007/s12517-014-1542-4

    Google Scholar 

  • Ambraseys N (2009) Earthquakes in the Mediterranean and Middle East: a multidisciplinary study of seismicity up to 1900. Published in the United States of America by Cambridge University Press, Newyork

  • Ambraseys NN, Melville CP, Adams RD (2005) The seismicity of Egypt, Arabia and the Red Sea: a historical review. Published in the United States of America by Cambridge University Press, Newyork

  • Aster G (2009) Validation Team. ASTER Global DEM validation, summary report

  • Aster G (2011) Validation Team, 2009. ASTER Global DEM validation: summary report. METI & NASA

  • Bathrellos GD, Kalivas D, Skilodimou HD (2009) GIS-based landslide susceptibility mapping models applied to natural and urban planning in Trikala, Central Greece. Estud Geol 65:49–65

    Article  Google Scholar 

  • Boender C, De Graan J, Lootsma F (1989) Multi-criteria decision analysis with fuzzy pairwise comparisons. Fuzzy Sets Syst 29:133–143

    Article  Google Scholar 

  • Bommer JJ, Akkar S (2012) Consistent source-to-site distance metrics in ground-motion prediction equations and seismic source models for PSHA. Earthq Spectra 28:1–15

    Article  Google Scholar 

  • Borcherdt R (1991) Methodology for predictive GIS mapping of special study zones for strong ground shaking in the San Francisco Bay region, CA. In: Proceedings of the Fourth International Conference on Seismic Zonation. pp 545–552

  • Borcherdt RD (1994) Estimates of site-dependent response spectra for design (methodology and justification). Earthq Spectra 10:617–653

    Article  Google Scholar 

  • Bosworth CE, editor (1986) Encyclopaedia of Islam, volume 5-volume V (Khe-Mahi), vol 5. Brill Archive, Leiden

  • Bozorgnia Y, Abrahamson N, Campbell K, Rowshandel B, Shantz T (2012) NGA-West2: a comprehensive research program to update ground motion prediction equations for shallow crustal earthquakes in active tectonic regions. In: Proceedings of 15th world conference on earthquake engineering, Lisbon, Portugal. pp 24–28

  • Camp VE, Roobol MJ (1989) The Arabian continental alkali basalt province: Part I. Evolution of Harrat Rahat, Kingdom of Saudi Arabia. Geol Soc Am Bull 101:71–95

    Article  Google Scholar 

  • Camp VE, Hooper PR, Roobol MJ, White D (1987) The Madinah eruption, Saudi Arabia: magma mixing and simultaneous extrusion of three basaltic chemical types. Bull Volcanol 49:489–508

    Article  Google Scholar 

  • Camp VE, Roobol MJ, Hooper PR (1991) The Arabian continental alkali basalt province: Part II. Evolution of Harrats Khaybar, Ithnayn, and Kura, Kingdom of Saudi Arabia. Geol Soc Am Bull 103:363–391

    Article  Google Scholar 

  • Castellaro S, Mulargia F, Rossi PL (2008) VS30: proxy for seismic amplification? Seismol Res Lett 79:540–543

    Article  Google Scholar 

  • Chen W, Li W, Hou E, Li X (2015) Retracted article: GIS-based landslide susceptibility mapping using analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji City, China. Environ Earth Sci 7:3951

    Article  Google Scholar 

  • Choice E (2013) Decision support software, 11.5. Expert Choice Inc, Pittsburgh

    Google Scholar 

  • Chousianitis K, Del Gaudio V, Kalogeras I, Ganas A (2014) Predictive model of Arias intensity and Newmark displacement for regional scale evaluation of earthquake-induced landslide hazard in Greece. Soil Dyn Earthq Eng 65:11–29

    Article  Google Scholar 

  • Dai F, Lee C, Zhang X (2001) GIS-based geo-environmental evaluation for urban land-use planning: a case study. Eng Geol 61:257–271

    Article  Google Scholar 

  • Douglas J et al (2014) Comparisons among the five ground-motion models developed using RESORCE for the prediction of response spectral accelerations due to earthquakes in Europe and the Middle East. Bull Earthq Eng 12:341–358

    Article  Google Scholar 

  • Ekström G, Nettles M, Dziewoński A (2012) The global CMT project 2004–2010: centroid-moment tensors for 13,017 earthquakes. Phys Earth Planet Inter 200:1–9

    Article  Google Scholar 

  • El-Isa ZH (2012) Seismicity and seismotectonics of the Gulf of Aqaba region. Arab J Geosci 6:3437–3449. doi:10.1007/s12517-012-0604-8

    Article  Google Scholar 

  • El-Isa Z, Al Shanti A (1989) Seismicity and tectonics of the Red Sea and western Arabia. Geophys J Int 97:449–457

    Article  Google Scholar 

  • Erol G, Topal T (2013) GIS-based microzonation of the Niksar settlement area for the purpose of urban planning (Tokat, Turkey). Environ Earth Sci 68(7):2065–2084. doi:10.1007/s12665-012-1893-7

    Article  Google Scholar 

  • Estoque RC (2012) Analytic hierarchy process in geospatial analysis. In: Progress in geospatial analysis. Springer, Japan, pp 157–181

    Chapter  Google Scholar 

  • Fnais M, Abdelrahman K, Al-Amri A (2010) Microtremor measurements in Yanbu city of Western Saudi Arabia: a tool for seismic microzonation. J King Saud Univ Sci 22:97–110

    Article  Google Scholar 

  • Fnais M, Al-Amri A, Kamal A (2012) Seismic Microzonation and Site Effect Response of Dammam and AlKhobar Cities, Eastern Province, Saudi Arabia, King Abdulaziz City for Science and Technology (KASCT), Project No. 08-SPA239-2

  • Ganapathy GP (2011) First level seismic microzonation map of Chennai city—a GIS approach. Nat Hazards Earth Syst Sci 11:549–559. doi:10.5194/nhess-11-549-2011

    Article  Google Scholar 

  • Grasso S, Maugeri M (2012) The Seismic Microzonation of the City of Catania (Italy) for the Etna Scenario Earthquake (M = 6.2) of 20 February 1818. Earthq Spectra 28:573–594. doi:10.1193/1.4000013

    Article  Google Scholar 

  • Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188

    Google Scholar 

  • Gutenberg B, Richter CF (1956) Magnitude and energy of earthquakes. Ann Geophys 9:1–15

    Google Scholar 

  • Hashim M, Ahmad S, Johari MAM, Pour AB (2013) Automatic lineament extraction in a heavily vegetated region using Landsat Enhanced Thematic Mapper (ETM plus) imagery. Adv Space Res 51:874–890. doi:10.1016/j.asr.2012.10.004

    Article  Google Scholar 

  • Hassanzadeh R, Nedović-Budić Z, Razavi AA, Norouzzadeh M, Hodhodkian H (2013) Interactive approach for GIS-based earthquake scenario development and resource estimation (Karmania hazard model). Comput Geosci 51:324–338

    Article  Google Scholar 

  • Hohl P, editor (1998) GIS data conversion: strategies, techniques, and management. OnWord Press, Albany, New York

  • ISC (2014) On-line Bulletin International Seismological Centre. Thatcham, United Kingdom. http://www.isc.ac.uk. Accessed June 2014

  • Jackson N, Walsh J, Pegram E (1984) Geology, geochemistry and petrogenesis of late Precambrian granitoids in the central Hijaz region of the Arabian Shield. Contrib Miner Petrol 87:205–219

    Article  Google Scholar 

  • Jibson RW (2007) Regression models for estimating coseismic landslide displacement. Eng Geol 91:209–218

    Article  Google Scholar 

  • Jibson RW, Jibson MW (2003) Java programs for using Newmark’s method and simplified decoupled analysis to model slope performance during earthquakes. Geological Survey (US), U.S.Department of the Interior

  • Kahle AB, Rowan LC (1980) Evaluation of multispectral middle infrared aircraft images for lithologic mapping in the East Tintic Mountains, Utah. Geology 8:234–239

    Article  Google Scholar 

  • Kamel AF (1991) Analysis of structural lineaments and their effect on the distribution of ring complexes in Southeastern Desert, Egypt. J Afr Earth Sci 13:193–199. doi:10.1016/0899-5362(91)90004-i

    Article  Google Scholar 

  • Kienzle A, Hannich D, Wirth W, Ehret D, Rohn J, Ciugudean V, Czurda K (2006) A GIS-based study of earthquake hazard as a tool for the microzonation of Bucharest. Eng Geol 87:13–32. doi:10.1016/j.enggeo.2006.05.008

    Article  Google Scholar 

  • Korte GB (1995) The GIS Book: understanding the value and implementation of geographic information system. On Word Press, Santa Fe

    Google Scholar 

  • Kramer SL, Smith MW (1997) Modified Newmark model for seismic displacements of compliant slopes. Journal of Geotechnical and Geoenvironmental Engineering

  • Kulhanek O (2005) Seminar on b-value dept of geophysics. Charles University, Prague

    Google Scholar 

  • Law M, Collins A (2013) Getting to know ArcGIS for desktop. Third edition, Esri Press, pp 640

  • Lee S, Choi J, Min K (2004) Probabilistic landslide hazard mapping using GIS and remote sensing data at Boun, Korea. Int J Remote Sens 25:2037–2052

    Article  Google Scholar 

  • Linkov I, Satterstrom F, Kiker G, Batchelor C, Bridges T, Ferguson E (2006) From comparative risk assessment to multi-criteria decision analysis and adaptive management: recent developments and applications. Environ Int 32:1072–1093

    Article  Google Scholar 

  • Liu K-S, Tsai Y-B (2005) Attenuation relationships of peak ground acceleration and velocity for crustal earthquakes in Taiwan. Bull Seismol Soc Am 95:1045–1058

    Article  Google Scholar 

  • Mandal S, Maiti R (2015) Application of analytical hierarchy process (AHP) and frequency ratio (FR) model in assessing landslide susceptibility and risk. In: Semi-quantitative approaches for landslide assessment and prediction. Springer, Singapore, pp 191–226

    Google Scholar 

  • Marinoni O (2004) Implementation of the analytical hierarchy process with VBA in ArcGIS. Comput Geosci 30:637–646

    Article  Google Scholar 

  • Markham BL, Barker J (1986) Landsat MSS and TM post-calibration dynamic ranges, exoatmospheric reflectances and at-satellite temperatures. EOSAT Landsat Tech Notes 1:3–8

    Google Scholar 

  • Masoud A, Koike K (2006) Tectonic architecture through Landsat-7 ETM+/SRTM DEM-derived lineaments and relationship to the hydrogeologic setting in Siwa region, NW Egypt. J Afr Earth Sci 45:467–477. doi:10.1016/j.jafrearsci.2006.04.005

    Article  Google Scholar 

  • Mohanty WK, Walling MY (2008) First order seismic microzonation of Haldia, Bengal Basin (India) using a GIS platform. Pure and Applied Geophysics, 165(7):1325–1350

    Article  Google Scholar 

  • Mohanty WK, Walling MY, Nath SK, Pal I (2007) First order seismic microzonation of Delhi, India using geographic information system (GIS). Nat Hazards 40:245–260. doi:10.1007/s11069-006-0011-0

    Article  Google Scholar 

  • Moufti M (1985) The geology of Harrat Al Madinah volcanic field, Harrat Rahat, Saudi Arabia. Unpub (Doctoral dissertation, PhD thesis, Univ. Lancaster, England)

  • Moufti M, Németh K (2013) The intra-continental Al Madinah Volcanic Field, Western Saudi Arabia: a proposal to establish Harrat Al Madinah as the first volcanic geopark in the Kingdom of Saudi Arabia. Geoheritage 5:185–206

    Article  Google Scholar 

  • Moufti M, Moghazi A, Ali K (2012) Geochemistry and Sr–Nd–Pb isotopic composition of the Harrat Al-Madinah Volcanic Field, Saudi Arabia. Gondwana Res 21:670–689

    Article  Google Scholar 

  • Nath SK (2004) Seismic hazard mapping and microzonation in the Sikkim Himalaya through GIS integration of site effects and strong ground motion attributes. Nat Hazards 31:319–342

    Article  Google Scholar 

  • Nath SK (2005) An initial model of seismic microzonation of Sikkim Himalaya through thematic mapping and GIS integration of geological and strong motion features. J Asian Earth Sci 25:329–343. doi:10.1016/j.jseaes.2004.03.002

    Google Scholar 

  • Nath SK, Thingbaijam KKS (2009) Seismic hazard assessment—a holistic microzonation approach. Nat Hazards Earth Syst Sci 9:1445–1459

    Article  Google Scholar 

  • Nath SK, Thingbaijam KKS, Raj A (2008) Earthquake hazard in Northeast India—a seismic microzonation approach with typical case studies from Sikkim Himalaya and Guwahati city. J Earth Syst Sci 117:809–831

    Article  Google Scholar 

  • Pal I, Nath SK, Shukla K, Pal DK, Raj A, Thingbaijam K, Bansal B (2008) Earthquake hazard zonation of Sikkim Himalaya using a GIS platform. Nat Hazards 45:333–377

    Article  Google Scholar 

  • Panzera F, Lombardo G (2013) Seismic property characterization of lithotypes cropping out in the Siracusa urban area, Italy. Eng Geol 153:12–24

    Article  Google Scholar 

  • Panzera F, Rigano R, Lombardo G, Cara F, Di Giulio G, Rovelli A (2011) The role of alternating outcrops of sediments and basaltic lavas on seismic urban scenario: the study case of Catania, Italy. Bull Earthq Eng 9:411–439

    Article  Google Scholar 

  • Papadimitriou AG, Antoniou AA, Bouckovalas GD, Marinos PG (2008) Methodology for automated GIS-aided seismic microzonation studies. Comput Geotech 35:505–523. doi:10.1016/j.compgeo.2007.10.001

    Article  Google Scholar 

  • Parolai S, Grunthal G, Wahlstrom R (2007) Site-specific response spectra from the combination of microzonation with probabilistic seismic hazard assessment—an example for the Cologne (Germany) area. Soil Dyn Earthq Eng 27:49–59. doi:10.1016/j.soildyn.2006.03.007

    Article  Google Scholar 

  • Pellaton C (1981) Geologic map of the Al-Madinah quadrangle, Sheet 24 D, Kingdom of Saudi Arabia, Saudi Arabian Deputy Ministry for Mineral resources, Riyadh, Geologic Map 6M, 52A, Scale: 250 000 with text, pp 19

  • Poirier J, Taher M (1980) Historical seismicity in the near and Middle East, North Africa, and Spain from Arabic documents (VIIth-XVIIIth century). Bull Seismol Soc Am 70:2185–2201

    Google Scholar 

  • Power M, Borcherdt R, Stewart J (2004) Site amplification factors from empirical studies. Report prepared for the Pacific Earthquake Engineering Research Center by NGA Working Group 5

  • Power M, Chiou B, Abrahamson N, Bozorgnia Y, Shantz T, Roblee C (2008) An overview of the NGA project. Earthq Spectra 24:3–21

    Article  Google Scholar 

  • Quadrio B, Ambrosanio M, Ioannilli M (2015) A GIS-based tool for reliability assessment of seismic microzonation studies according to Italian instructions and criteria. In: Engineering geology for society and territory, vol 5. Springer International Publishing, pp 1123–1126

  • Reasenberg P (1985) Second-order moment of central California seismicity, 1969–1982. J Geophys Res (1978–2012) 90:5479–5495

    Article  Google Scholar 

  • Saaty TL (1988) What is the analytic hierarchy process?. Springer, Berlin, Heidelberg, pp 109–121

  • Saaty TL (1990) How to make a decision: the analytic hierarchy process. Eur J Oper Res 48:9–26

    Article  Google Scholar 

  • Saaty TL (1994) How to make a decision: the analytic hierarchy process. Interfaces 24:19–43

    Article  Google Scholar 

  • Saaty TL (2008) Decision making with the analytic hierarchy process. Int J Serv Sci 1:83–98

    Google Scholar 

  • SBC304C (2007) Saudi Building Code, and National Committee (SBC304C). General Secretariat of the Saudi Building Code National Committee. ISBN: 9960-9883-5-X

  • Sen Z, Al-Suba’i K (2001) Seismic hazard assessment in the Tihamat Asir region, southwestern Saudi Arabia. Math Geol 33:967–991. doi:10.1023/a:1012579323959

    Article  Google Scholar 

  • Stern RJ (1985) The Najd Fault System, Saudi Arabia and Egypt: a Late Precambrian rift-related transform system? Tectonics 4:497–511

    Article  Google Scholar 

  • Sucuoğlu H, Akkar S (2014) Seismic hazard assessment. In: Basic earthquake engineering. Springer International Publishing, pp 41–73

  • Sultan M, Arvidson RE, Duncan IJ, Stern RJ, El Kaliouby B (1988) Extension of the Najd shear system from Saudi Arabia to the central Eastern Desert of Egypt based on integrated field and Landsat observations. Tectonics 7:1291–1306

    Article  Google Scholar 

  • Taheri K, Gutiérrez F, Mohseni H, Raeisi E, Taheri M (2015) Sinkhole susceptibility mapping using the analytical hierarchy process (AHP) and magnitude–frequency relationships: a case study in Hamadan province, Iran. Geomorphology 234:64–79

    Article  Google Scholar 

  • Teramo A, Maugeri M, Bottari A, Termini D (2005) On a quick seismic microzonation of wide areas. Pure Appl Geophys 162:671–682

    Article  Google Scholar 

  • Trifunac MD, Todorovska MI (1996) Nonlinear soil response—1994 Northridge, California, earthquake. Journal of Geotechnical Engineering

  • Tüdeş Ş, Polatkan D, Yavuz KB (2015) Microzonation of Gölbaşı special environmental protection area with respect to geoenvironmental criteria. In: Engineering geology for society and territory, vol 5. Springer, International Publishing, pp 393–396

  • Turk T, Gumusay U, Tatar O (2012) Creating infrastructure for seismic microzonation by geographical information systems (GIS): a case study in the North Anatolian Fault Zone (NAFZ). Comput Geosci 43:167–176. doi:10.1016/j.cageo.2011.10.006

    Article  Google Scholar 

  • Vail JR (1985) Pan-African (late Precambrian) tectonic terrains and the reconstruction of the Arabian-Nubian Shield. Geology 13:839–842

    Article  Google Scholar 

  • Wald DJ, McWhirter L, Thompson E, Hering A (2011) A new strategy for developing VS30 maps. In: Proceedings of the 4th international symposium on the effects of surface geology on seismic motion

  • Wiemer S (2001) A software package to analyze seismicity: ZMAP. Seismol Res Lett 72:373–382

    Article  Google Scholar 

  • Wills CJ, Silva W (1998) Shear-wave velocity characteristics of geologic units in California. Earthq Spectra 14:533–556

    Article  Google Scholar 

  • Yaghmaei-Sabegh S, Motallebzade R (2012) An effective procedure for seismic hazard analysis including nonlinear soil response. Nat Hazards 64:1731–1752

    Article  Google Scholar 

  • Yong A, Hough SE, Abrams MJ, Cox HM, Wills CJ, Simila GW (2008) Site characterization using integrated imaging analysis methods on satellite data of the Islamabad, Pakistan, region. Bull Seismol Soc Am 98:2679–2693

    Article  Google Scholar 

  • Youssef AM, Maerz NH (2013) Overview of some geological hazards in the Saudi Arabia. Environ Earth Sci 70:3115–3130. doi:10.1007/s12665-013-2373-4

    Article  Google Scholar 

Download references

Acknowledgments

This Project was funded by the National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, Award Number (09-ENV840-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayed S. R. Moustafa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moustafa, S.S.R., SN Al-Arifi, N., Jafri, M.K. et al. First level seismic microzonation map of Al-Madinah province, western Saudi Arabia using the geographic information system approach. Environ Earth Sci 75, 251 (2016). https://doi.org/10.1007/s12665-015-5073-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-5073-4

Keywords

Navigation