Environmental Earth Sciences

, 75:242 | Cite as

Multi-temporal InSAR evidence of ground subsidence induced by groundwater withdrawal: the Montellano aquifer (SW Spain)

  • Ana Ruiz-Constán
  • Antonio M. Ruiz-Armenteros
  • Francisco Lamas-Fernández
  • Sergio Martos-Rosillo
  • J. Manuel Delgado
  • David P. S. Bekaert
  • Joaquim João Sousa
  • Antonio J. Gil
  • Miguel Caro Cuenca
  • Ramon F. Hanssen
  • Jesús Galindo-Zaldívar
  • Carlos Sanz de Galdeano
Original Article

Abstract

This study uses the InSAR technique to analyse ground subsidence due to intensive exploitation of an aquifer for agricultural and urban purposes in the Montellano town (SW Spain). The detailed deformation maps clearly show that the spatial and temporal extent of subsidence is controlled by piezometric level fluctuations and the thickness of compressible sediments. The total vertical displacement measured with multi-temporal InSAR, between 1992 and 2010, is 33 mm that corresponds with a decrease of 43 m in the groundwater level. This technique allows monitoring the evolution of settlement related to water level fall in an area where subsidence has not yet been reported by population or authorities through infrastructure damages and to discuss the effect of the aquifer recovery. This information is, therefore, valuable for implementing effective groundwater management schemes and land-use planning and to propose new building regulations in the most affected areas.

Keywords

InSAR Radar interferometry Subsidence Deformation SW Spain Aquifer 

References

  1. Amelung F, Galloway DL, Bell JW, Zebker H, Laczniak RJ (1999) Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology 27(6):483–486CrossRefGoogle Scholar
  2. Aobpaet A, Caro Cuenca M, Hooper A, Trisirisatayawong I (2013) InSAR time-series analysis of land subsidence in Bangkok, Thailand. Int J Remote Sens 34(8):2969–2982CrossRefGoogle Scholar
  3. Bamler R, Hartl P (1998) Synthetic aperture radar interferometry. Inverse Probl 14:R1–R54. doi:10.1088/0266-5611/14/4/001 CrossRefGoogle Scholar
  4. Bekaert DPS, Hooper A, Wright TJ (2015) A spatially-variable power-law tropospheric correction technique for InSAR data. J Geophys Res Sol Ea. doi:10.1002/2014JB011558 Google Scholar
  5. Bell JW, Amelung F, Ferretti A, Bianchi M, Novali F (2008) Permanent scatterer InSAR reveals seasonal and long-term aquifer-system response to groundwater pumping and artificial recharge. Water Resour Res 44:W02407. doi:10.1029/2007WR006152 Google Scholar
  6. Bürgmann R, Rose PA, Fielding EJ (2000) Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annu Rev Earth Planet Sci 28:169–209CrossRefGoogle Scholar
  7. Casagrande A (1936) The determination of pre-consolidation load and its practical significance. Proceedings of the first international conference on soil mechanics and foundation engineering, vol 3. Cambridge, England, pp 60–64Google Scholar
  8. Chai JC, Shen SL, Zhu HH, Zhang XL (2004) Land subsidence due to groundwater drawdown in Shanghai. Géotechnique 54(2):143–147CrossRefGoogle Scholar
  9. Chaussard E, Wdowinski S, Cabral E, Amelung F (2014) Land Subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sens Environ 104:94–106. doi:10.1016/j.rse.2013.08.038 CrossRefGoogle Scholar
  10. Davila-Hernandez N, Madrigal D, Expósito JL, Antonio X (2014) Multi-temporal analysis of land subsidence in Toluca valley (Mexico) through a combination of persistent interferometry (PSI) and historical piezometric data. Adv Remote Sens 3:49–60. doi:10.4236/ars.2014.32005 CrossRefGoogle Scholar
  11. Durán-Valsero JJ, López-Geta JA, Martín-Machuca M, Maestre Acosta A, Pérez Martín P, Mora Fernández P (2003) Atlas hidrogeológico de la provincia de Sevilla. IGME-Diputación Provincial de Sevilla, p 208Google Scholar
  12. Fernández P, Irigaray C, Jiménez J, Hamdouni R, Crosetto M, Monserrat O, Chacón J (2009) First delimitation of areas affected by ground deformations in the Guadalfeo river valley and Granada metropolitan area (Spain) using the DInSAR technique. Eng Geol 105:84–101CrossRefGoogle Scholar
  13. Ferretti A, Fumagalli A, Novali F, Prati C, Rocca F, Rucci A (2011) A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans Geosci Remote Sens 49:3460–3470CrossRefGoogle Scholar
  14. Gabriel AK, Goldstein RM, Zebker HA (1989) Mapping small elevation changes over large areas: differential radar interferometry. J Geophys Res 94:9183–9191CrossRefGoogle Scholar
  15. Galloway DL, Hoffmann J (2007) The application of satellite differential SAR interferometry-derived ground displacements in hydrogeology. Hydrogeol J 15(1):133–154. doi:10.1007/s10040-006-0121-5 CrossRefGoogle Scholar
  16. Galloway DL, Hudnut KW, Ingebritsen SE, Philips SP, Peltzer G, Rogez F, Rosen PA (1998) Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope valley, Mojave desert, California. Water Resour Res 34(10):2573–2585CrossRefGoogle Scholar
  17. Gregory AS, Whaley WR, Watts CW, Bird NRA, Hallet PD, Whitmore AP (2006) Calculation of the compression index and precompression stress from soil compression test data. Soil Tillage Res 89:45–57Google Scholar
  18. Hanssen RF (2001) Radar interferometry: data interpretation and error analysis. Kluwer Academic Publishers, Dordrecht 328 pp CrossRefGoogle Scholar
  19. Helm DC (1984) Field-based computational techniques for predicting subsidence due to fluid withdrawal. In: Holzer TL (ed) Man-induced land subsidence: reviews in engineering geology 6: 1–22Google Scholar
  20. Hooper AJ (2006) Persistent scatterer radar interferometry for crustal deformation studies and modelling of volcanic deformation. Ph.D. thesis, Stanford UniversityGoogle Scholar
  21. Hooper A (2008) A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys Res Lett 35:L16302. doi:10.1029/2008GL034654 CrossRefGoogle Scholar
  22. Hooper A (2010) A statistical-cost approach to unwrapping the phase of InSAR time series. European Space Agency ESA SP-677 (Special publication) Google Scholar
  23. Hooper A, Zebker H, Segall P, Kampes B (2004) A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett 31:L23611. doi:10.1029/2004GL021737 CrossRefGoogle Scholar
  24. Hooper A, Segall P, Zebker H (2007) Persistent scatterer InSAR for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J Geophys Res 112:B07407. doi:10.1029/2006JB004763 Google Scholar
  25. Hooper A, Bekaert DPS, Spaans K, Arikan M (2012) Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 514–517:1–13. doi:10.1016/j.tecto.2011.10.013 CrossRefGoogle Scholar
  26. Hooper A, Bekaerti D, Spaans K (2013) StaMPS/MTI manual. Version 3.3b1. School of Earth and Environment, University of Leeds, UKGoogle Scholar
  27. Hu RL, Yue ZQ, Wang LC, Wang SJ (2004) Review on current status and challenging issues of land subsidence in China. Eng Geol 76:65–77CrossRefGoogle Scholar
  28. IGME (1988) Memoria y mapa geológico de España, escala 1:50.000. Hoja de Montellano (1035)Google Scholar
  29. Jamiolkowski M, Ladd CC, Germaine J, Lancellotta R (1985) New developments in field and lab testing of soils. Proceedings 11th international conference on soil mechanics and foundations engineering, vol 1. San Francisco, pp 57–154Google Scholar
  30. Jiang L, Lin H, Cheng S (2011) Monitoring and assessing reclamation settlement in coastal areas with advanced InSAR techniques: Macao city (China) case study. Int J Remote Sens 32:3565–3588. doi:10.1080/01431161003752448 CrossRefGoogle Scholar
  31. Kirker AI, Platt JP (1998) Unidirectional slip vectors in the western Betic Cordillera: implications for the formation of the Gibraltar arc. J Geol Soc 155:193–207. doi:10.1144/gsjgs.155.1.0193 CrossRefGoogle Scholar
  32. Leake SA (1990) Interbed storage changes and compaction in models of regional groundwater flow. Water Resour Res 26(9):1939–1950CrossRefGoogle Scholar
  33. Martín-Algarra A, Vera JA (2004) La Cordillera Bética y las Baleares en el contexto del Mediterráneo occidental. In: Vera JA (ed) Geología de España. Soc Geol de Esp, Madrid, pp 352–354Google Scholar
  34. Massonnet E, Feigl KL (1998) Radar interferometry and its application to changes in the Earth’s surface. Rev Geophys 36:441–500CrossRefGoogle Scholar
  35. Mitchel JK (1998) Introduction: hazards in changing cities. Appl Geogr 18(1):1–6CrossRefGoogle Scholar
  36. Ortiz-Zamora D, Ortega-Guerrero A (2010) Evolution of long-term land subsidence near Mexico City: review, field investigations, and predictive simulations. Water Resour Res 46(1):W01513. doi:10.1029/2008WR007398 CrossRefGoogle Scholar
  37. Osmanoglu B, Dixon TH, Wdowinski S, Cabral-Cano E, Jiang Y (2011) Mexico City subsidence observed with persistent scatterer InSAR. Int J Appl Earth Obs Geoinform 13(1):1–12. doi:10.1016/j.jag.2010.05.009 CrossRefGoogle Scholar
  38. Pedrera A, Marín-Lechado C, Martos-Rosillo S, Roldán FJ (2012) Curved fold-and thrust accretion during the extrusion of a synorogenic viscous allochthonous sheet: The Estepa Range (External Zones, Western Betic Cordillera, Spain). Tectonics 31: TC4024. doi:10.1029/2012TC003130
  39. Perissin D, Wang T (2011) Time-series InSAR applications over urban areas in China. IEEE J Sel Top Appl Earth Obs Remote Sens 4(1):92–100. doi:10.1109/JSTARS.2010.2046883 CrossRefGoogle Scholar
  40. Poland JF (1961) The coefficient of storage in a region of major subsidence caused by compaction of an aquifer system. US geological survey professional paper 424-B: 52–54Google Scholar
  41. Rodríguez Ortiz JM, Mulas J (2002) Subsidencia generalizada en la ciudad de Murcia (España). In: Carcedo JA, Cantos JO (eds) Riesgos Naturales. Editorial Ariel, Barcelona, pp 459–463Google Scholar
  42. Rosen PA, Hensley S, Joughin IR, Li FK, Madsen SN, Rodrígues E, Goldstein RM (2000) Synthetic aperture radar interferometry. Proc IEEE 88:333–385CrossRefGoogle Scholar
  43. Scharroo R, Visser P (1998) Precise orbit determination and gravity field improvement for the ERS satellites. J Geophys Res 103:8113–8127. doi:10.1029/97JC03179 CrossRefGoogle Scholar
  44. Shi LX, Bao MF (1984) Case history no. 9.2—Shanghai, China. In Poland JF (ed) Guidebook to studies of land subsidence due to groundwater withdrawal, UNESCO, Paris. http://wwwrcamnl.wr.usgs.gov/rgws/Unesco/PDF-Chapters/Chapter9-2.pdf. Accessed 21 Dec 2015
  45. Sousa J, Hanssen R, Bastos L, Ruiz A, Perski Z, Gil A (2007) Ground subsidence in the Granada City and surrounding area (Spain) using DInSAR monitoring. In: AGU Meeting 2007. S. Francisco, USA, 10–14 Dec 2007Google Scholar
  46. Sousa J, Ruiz A, Hanssen R, Bastos L, Gil A, Galindo-Zaldívar J, Sanz de Galdeano C (2010) PS-InSAR processing methodologies in the detection of field surface deformation—study of the Granada Basin (Central Betic Cordilleras, Southern Spain). J Geodyn 49:181–189. doi:10.1016/j.jog.2009.12.002 CrossRefGoogle Scholar
  47. Sousa J, Hooper A, Hanssen R, Bastos L, Ruiz A (2011) Persistent scatterer InSAR: a comparison of methodologies based on a model of temporal deformation vs. spatial correlation selection criteria. Remote Sens Environ 115(10):2652–2663CrossRefGoogle Scholar
  48. Sridharan A, Abraham BM, Jose BT (1991) Improved method for estimation of preconsolidation pressure. Geotechnique 41(2):263–268CrossRefGoogle Scholar
  49. Tomás R, Márquez Y, Lopez-Sanchez JM, Delgado J, Blanco P, Mallorqui JJ, Martinez M, Herrera G, Mulas J (2005) Mapping ground subsidence induced by aquifer overexploitation using advanced differential SAR interferometry: Vega Media of the Segura River (SE Spain) case study. Remote Sens Environ 98:269–283. doi:10.1016/j.enggeo.2010.06.004 CrossRefGoogle Scholar
  50. Tomás R, Herrera G, Lopez-Sanchez JM, Vicente F, Cuenca A, Mallorqui JJ (2010) Study of the land subsidence in Orihuela City (SE Spain) using PSI data: distribution, evolution and correlation with conditioning and triggering factors. Eng Geol 116:105–121CrossRefGoogle Scholar
  51. Wang C, Zhang H, Shan X, Ma J, Liu Z, Cheng S, Lu G, Tang Y, Guo Z (2004) Applying SAR interferometry for ground deformation detection in China. Photogramm Eng Remote Sens 70(10):1157–1165CrossRefGoogle Scholar
  52. Xue YQ, Zhang Y, Ye SJ, Wu JC, Li QF (2005) Land subsidence in China. Environ Geol 48:713–720CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ana Ruiz-Constán
    • 1
  • Antonio M. Ruiz-Armenteros
    • 2
    • 3
    • 4
  • Francisco Lamas-Fernández
    • 5
  • Sergio Martos-Rosillo
    • 1
  • J. Manuel Delgado
    • 3
    • 6
  • David P. S. Bekaert
    • 7
  • Joaquim João Sousa
    • 8
  • Antonio J. Gil
    • 2
    • 3
    • 4
  • Miguel Caro Cuenca
    • 9
  • Ramon F. Hanssen
    • 10
  • Jesús Galindo-Zaldívar
    • 11
    • 12
  • Carlos Sanz de Galdeano
    • 12
  1. 1.Instituto Geológico y Minero de EspañaMadridSpain
  2. 2.Departamento de Ingeniería Cartográfica, Geodésica y FotogrametríaUniversidad de JaénJaénSpain
  3. 3.Grupo de Investigación Microgeodesia JaénUniversidad de JaénJaénSpain
  4. 4.Centro de Estudios Avanzados en Ciencias de la Tierra (CEACTierra)Universidad de JaénJaénSpain
  5. 5.Departamento de Ingeniería CivilUniversidad de Granada, ETSICCPGranadaSpain
  6. 6.Progressive Systems SrlRomeItaly
  7. 7.COMET, School of Earth and EnvironmentUniversity of LeedsLeedsUK
  8. 8.Escola de Ciências e TecnologiaUniversidade de Trás-os-Montes e Alto DouroVila RealPortugal
  9. 9.Department of Radar TechnologyTNOThe HagueThe Netherlands
  10. 10.Department of Geoscience and Remote SensingDelft University of TechnologyDelftThe Netherlands
  11. 11.Departamento de GeodinámicaUniversidad de GranadaGranadaSpain
  12. 12.Instituto Andaluz de Ciencias de la TierraCSIC-Universidad de GranadaGranadaSpain

Personalised recommendations