Skip to main content

Advertisement

Log in

Influence of different land uses on groundwater quality in southern Portugal

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In Alentejo region, southern Portugal, differences in groundwater samples from six groundwater bodies covered with different land uses were analysed based on the monitoring plan of the Alqueva multi-purpose project, created in the sequence of the construction of the Alqueva Dam on the Guadiana River, in South Portugal. For most of the groundwater bodies there is a statistical significant difference between magnesium, sulphate, chloride, and phosphate. All of these ions are strongly correlated with land use management. Groundwater, where land is covered by olive groves, has high levels of electric conductivity, calcium, potassium, sulphate, and phosphate. Dry land crops are correlated with calcium, magnesium, chloride and consequently, electric conductivity, phosphates and sulphate. Vineyards are strongly correlated with high sulphate and phosphate levels. This study clearly shows that different land uses within a certain groundwater body influence the water quality in a different way. Therefore, an appropriate soil management should be adjusted to each situation, taking into account the aquifer matrix and the overlying soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams S, Titus R, Pietersen K, Tredoux G, Harris C (2001) Hydrochemical characteristics of aquifers near Sutherland in the Western Karoo, South Africa. J Hydrol 241:91–103

    Article  Google Scholar 

  • Almeida C, Mendonça J, Jesus MR, Gomes A (2000) Sistemas Aquíferos de Portugal Continental [Aquifer Systems of Continental Portugal]. Instituto da Água/Centro de Geologia da Universidade de Lisboa

  • Aris AZ, Abdullah MH, Kim K (2007) Hydrogeochemistry of groundwater in Manukan Island, Sabah. Malaysian J Anal Sci 11:407–413

    Google Scholar 

  • Basnyat P, Teeter L, Flynn K, Lockaby G (1999) Relationships between landscape characteristics and non-point source pollution inputs to coastal estuaries. Environ Manage 23:539–549. doi:10.1007/s002679900208

    Article  Google Scholar 

  • Bowatte S, Tillman R, Carran A, Gillingham A (2006) Can phosphorus fertilisers alone increase levels of soil nitrogen in New Zealand hill country pastures? Nutr Cycl Agroecosyst 75:57–66. doi:10.1007/s10705-006-9011-4

    Article  Google Scholar 

  • Burkartaus M, Stoner J (2008) Nitrogen in groundwater associated with agricultural systems. In: Hatfield JL, Follett RF (eds) Nitrogen in the environment: sources, problems, and management. USDA-ARS/UNL Faculty, Lincoln, pp 177–202

    Chapter  Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568. doi:10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2

  • Chambel A, Ribeiro L, Nascimento J, Duque J (1999) Development and application of hydrochemical factorial indexes using principal component analysis in South Portuguese Zone in Alentejo (Portugal). In: Hydrogeology and land use management, Fendeková M, Fendek M (eds) XXIX IAH Congress, Bratislava, pp 409–413

    Google Scholar 

  • Chambel A, Duque J, Matoso A, Orlando M (2006) Hidrogeologia em Portugal Continental [Hydrogeology in Continental Portugal]. In: Durán J (ed) Boletín Geológico Y Minero, pp 163–185

  • Chambel A, Duque J, Nascimento J (2007) Regional study of hard rock aquifers in Alentejo, south Portugal: methodology and results. In: Krásný J, Sharp JM (eds) IAH-SP Series. Taylor and Francis, pp 73–93

  • Costa AM, Pimentel NLV, Barbosa BP (2003) A Formação de Vale do Guizo e o bordo oriental da Bacia do Baixo Tejo entre Crato e Avis: dados preliminares [Vale de Guizo Formation and the eastern border of the Lower Tagus Watershed between Crato and Avis: preliminary data]. In: Ciências Da Terra (UNL), Lisboa, no esp. V, CD-ROM, C24–C27

  • Duan L, Hao J, Xie S, Zhou Z, Ye X (2002) Determining weathering rates of soils in China. Geoderma 110:205–225. doi:10.1016/S0016-7061(02)00231-8

    Article  Google Scholar 

  • Duque J, Almeida C (1998) Caracterizaçao hidroquímica do Sistema Aquífero dos Gabros de Beja [Hydrochemical characterization of the Aquifer System of the Gabbros of Beja]. In: 4o Congresso da Água. Acta, Lisbon, CD–164

  • ERHSA (2001) Projecto Estudo dos Recursos Hídricos Subterrâneos do Alentejo [Project Study of Groundwater Resources of Alentejo]. Comissão de Coordenação da Região Alentejo, Évora

  • Fialho A, Chambel A, Duque J (1998) Sistema Aquífero dos Gnaisses de Évora [Aquifer system of the Gnaisses of Évora]. In: 4o Congresso da Água. Comunicações, Lisbon, CD–10

  • Foster S, Hirata R, Gomes D, D’Elia M, Paris M (2002) Groundwater quality protection: a guide for water utilities, municipal authorities, and environment agencies. The World Bank, Washington, D.C.

    Book  Google Scholar 

  • Gasith A, Resh VH (1999) Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annu Rev Ecol Syst. doi:10.1146/annurev.ecolsys.30.1.51

  • Glavan M, Pintar M (2010) Impact of point and diffuse pollution sources on nitrate and ammonium ion concentrations in the karst-influenced Temenica river. Fresenius Environ Bull 19:1005–1014

    Google Scholar 

  • Glavan M, Mili V, Pintar M (2013) Finding options to improve catchment water quality-Lessons learned from historical land use situations in a Mediterranean catchment in Slovenia. Ecol Modell 261–262:58–73. doi:10.1016/j.ecolmodel.2013.04.004

    Article  Google Scholar 

  • Griffith JA (2002) Geographic techniques and recent applications of remote sensing to landscape-water quality studies. Water Air Soil Pollut 138:181–197

    Article  Google Scholar 

  • Guo H, Wang Y (2004) Hydrogeochemical processes in shallow quaternary aquifers from the northern part of the Datong Basin, China. Appl Geochemistry 19:19–27. doi:10.1016/S0883-2927(03)00128-8

    Article  Google Scholar 

  • Hecke T Van (2012) Power study of ANOVA versus Kruskal–Wallis test. J Stat Manag Syst 15:241–247. doi:10.1080/09720510.2012.10701623

    Article  Google Scholar 

  • Kolpin DW (1997) Agricultural chemicals in groundwater of the midwestern United States: relations to land use. J Environ Qual 26:1025–1037. doi:10.2134/jeq1997.00472425002600040014x

    Article  Google Scholar 

  • Lerner DN, Harris B (2009) The relationship between land use and groundwater resources and quality. Land use policy 26:S265–S273. doi:10.1016/j.landusepol.2009.09.005

    Article  Google Scholar 

  • Lin CY, Abdullah MH, Praveena SM, Yahaya AHB, Musta B (2012) Delineation of temporal variability and governing factors influencing the spatial variability of shallow groundwater chemistry in a tropical sedimentary island. J Hydrol 432–433:26–42. doi:10.1016/j.jhydrol.2012.02.015

    Article  Google Scholar 

  • Matson PA (1997) Agricultural intensification and ecosystem properties. Science 277:504–509. doi:10.1126/science.277.5325.504

    Article  Google Scholar 

  • Menezes JPC De, Bertossi APA, Santos AR, Neves MA (2014) Correlação entre uso da terra e qualidade da água subterrânea [Correlation between land use and groundwater quality]. Eng. Sanit. e Ambient. 19:173–186. doi:10.1590/S1413-41522014000200008

    Article  Google Scholar 

  • Morais M (1995) Organização espacial e temporal de um rio temporário Mediterrâneo (rio Degebe, Bacia Hidrográfica do Guadiana) [Spatial and temporal organisation of a Mediterranean temporary river (river Degebe, Guadiana Hydrographic Watershed)]. Univeristy of Évora

  • Morais M, Pinto P, Guilherme P, Rosado J, Antunes I (2004) Assessment of temporary streams: the robustness of metric and multimetric indices under different hydrological conditions. Hydrobiologia 516:229–249. doi:10.1023/B:HYDR.0000025268.66163.32

    Article  Google Scholar 

  • Morgenstern U, Daughney C (2012) Groundwater age for identification of baseline groundwater quality and impacts of land-use intensification—The National Groundwater Monitoring Programme of New Zealand. J Hydrol 456–457:79–93. doi:10.1016/j.jhydrol.2012.06.010

    Article  Google Scholar 

  • Pacheco FAL (1998) Application of correspondence analysis in the assessment of groundwater chemistry. Math Geol 30(2):129–161. doi:10.1029/96WR01683

    Article  Google Scholar 

  • Pacheco FAL, Landim PMB (2005) Two-way regionalized classification of multivariate data sets and its application to the assessment of hydrodynamic dispersion. Math Geol 37(4):393–417. doi:10.1007/s11004-005-5955-1

    Article  Google Scholar 

  • Pacheco FAL, Szocs T (2006) “Dedolomitization Reactions” driven by anthropogenic activity on loessy Sediments, SW Hungary. Appl Geochem 21:614–631. doi:10.1016/j.apgeochem.2005.12.009

    Article  Google Scholar 

  • Pacheco FAL, Van der Weijden CH (1996) Contributions of water-rock interactions to the composition of groundwater in areas with sizeable anthropogenic input. A case study of the waters of the Fundão area, central Portugal. Water Resour Res 32(12):3553–3570. doi:10.1029/96WR01683

    Article  Google Scholar 

  • Pacheco FAL, Van der Weijden CH (2002) Mineral weathering rates calculated from spring water data: a case study in an area with intensive agriculture, the Morais massif, NE Portugal. Appl Geochem 17(5):583–603. doi:10.1016/S0883-2927(01)00121-4

    Article  Google Scholar 

  • Pacheco FAL, Van der Weijden CH (2012a) Weathering of plagioclase across variable flow and solute transport regimes. J Hydrol 420–421:46–58. doi:10.1016/j.jhydrol.2011.11.044

    Article  Google Scholar 

  • Pacheco FAL, Van der Weijden CH (2012b) Integrating topography, hydrology and rock structure in weathering rate models of spring watersheds. J Hydrol 428–429:32–50. doi:10.1016/j.jhydrol.2012.01.019

    Article  Google Scholar 

  • Pacheco FAL, Van der Weijden CH (2014a) Modeling rock weathering in small watersheds. J Hydrol 513C:13–27. doi:10.1016/j.jhydrol.2014.03.036

    Article  Google Scholar 

  • Pacheco FAL, Van der Weijden CH (2014b) Role of hydraulic diffusivity in the decrease of weathering rates over time. J Hydrol 512:87–106. doi:10.1016/j.jhydrol.2014.02.041

    Article  Google Scholar 

  • Pacheco FAL, Sousa Oliveira A, Van der Weijden AJ, Van der Weijden CH (1999) Weathering, biomass production and groundwater chemistry in an area of dominant anthropogenic influence, the Chaves-Vila Pouca de Aguiar region, north of Portugal. Water Air Soil Pollut 115(1/4):481–512. doi:10.1023/A:1005119121666

  • Pacheco FAL, Landim PMB, Szocs T (2013) Anthropogenic impacts on mineral weathering: a statistical perspective. Appl Geochem 36:34–48. doi:10.1016/j.apgeochem.2013.06.012

    Article  Google Scholar 

  • PGBH (2012) Plano de Gestão das Bacias Hidrográficas integradas na Região Hidrográfica 7 [Management plan of the hydrographic watersheds integrated in the hydrographic region 7]. Administração Regional, Ministério da Agricultura, Mar, Ambiente e Ordenamento Territorial

    Google Scholar 

  • Rademacher LK, Clark JF, Hudson GB, Erman DC, Erman NA (2001) Chemical evolution of shallow groundwater as recorded by springs, Sagehen basin; Nevada County, California. Chem Geol 179:37–51. doi:10.1016/S0009-2541(01)00314-X

    Article  Google Scholar 

  • Ribeiro L (2009) Águas subterrâneas [Groundwater]. In: Pereira H, Domingos T, Vicente L, Proença V (eds) Ecossistemas e Bem-Estar Humano em Portugal, Avaliaçao para Portugal do Millennium Ecossystem Assessment. Escolar Editora, Lisbon, pp 381–411

    Google Scholar 

  • Rosado J, Morais M (2010) Climate change and water scarcity: from a global scale to particular aspects in Mediterranean region (Portugal). In: Sens L, Mondardo R (eds) Science and Technology for Environmental Studies—experiences from Brazil, Portugal and Germany. Federal University of Santa Catarina, pp 15–27

  • Roth NE, Allan JD, Erickson DL (1996) Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landsc Ecol 11:141–156. doi:10.1007/BF02447513

    Article  Google Scholar 

  • Rusjan S, Brilly M, Mikoš M (2008) Flushing of nitrate from a forested watershed: an insight into hydrological nitrate mobilization mechanisms through seasonal high-frequency stream nitrate dynamics. J Hydrol 354:187–202. doi:10.1016/j.jhydrol.2008.03.009

    Article  Google Scholar 

  • Santos RMB, Sanches Fernandes LF, Moura JP, Pereira MG, Pacheco FAL (2014) The impact of climate change, human interference, scale and modeling uncertainties on the estimation of aquifer properties and river flow components. J Hydrol 519:1297–1314. doi:10.1016/j.jhydrol.2014.09.001

    Article  Google Scholar 

  • Santos RMB, Sanches Fernandes LF, Varandas SGP, Pereira MG, Sousa R, Teixeira A, Lopes-Lima M, Cortes RMV, Pacheco FAL (2015) Impacts of climate change and land-use scenarios on Margaritifera margaritifera, an environmental indicator and endangered species. Sci Total Environ 511:477–488. doi:10.1016/j.scitotenv.2014.12.090

    Article  Google Scholar 

  • Serafim A, Morais M, Guilherme P, Sarmento P, Ruivo M, Magriço A (2006) Spatial and temporal heterogeneity in the Alqueva reservoir, Guadiana river, Portugal. Limnetica 25:771–786

    Google Scholar 

  • Silva H, Morais M, Rosado J, Serafim A, Pedro A, Sarmento P, Fialho A (2011) South Portugal Reservoirs—Status and major concerns. In: The 12 th International Specialized Conference on Watershed and River Basin Management. International Water Association (IWA), Recife, p 8

  • SNIRH (2012) Sistema Nacional de Informação de Recursos Hídricos [National information system on water resources]

  • Soveral Dias J (1999) Código de Boas Práticas Agrícolas [Code of Good Agriculture Practices]. Laboratório Químico-Agrícola Rebelo da Silva

  • Stigter TY, Carvalho Dill AMM, Ribeiro L, Reis E (2006) Impact of the shift from groundwater to surface water irrigation on aquifer dynamics and hydrochemistry in a semi-arid region in the south of Portugal. Agric Water Manag 85:121–132. doi:10.1016/j.agwat.2006.04.004

  • Treidel H, Martin-bordes JL, Gurdak J (2012) Climate change effects on groundwater resources. CRC Press, Taylor and Francis Group, London

    Google Scholar 

  • Valle Junior RF, Varandas SGP, Sanches Fernandes LF, Pacheco FAL (2014) Groundwater quality in rural watersheds with environmental land use conflicts. Sci Total Environ 493:812–827. doi:10.1016/j.scitotenv.2014.06.068

    Article  Google Scholar 

  • Van der Weijden CH, Pacheco FAL (2006) Hydrogeochemistry in the Vouga river basin (central Portugal): pollution and chemical weathering. Appl Geochem 21:580–613. doi:10.1016/j.apgeochem.2005.12.006

    Article  Google Scholar 

  • Vijith H, Satheesh R (2007) Geographical Information System based assessment of spatiotemporal characteristics of groundwater quality of upland sub-watersheds of Meenachil River, parts of Western Ghats, Kottayam District, Kerala, India. Environ Geol. 53:1–9. doi:10.1007/s00254-006-0612-7

    Article  Google Scholar 

  • Yang Q, Meng F-R, Zhao Z, Chow TL, Benoy G, Rees HW, Bourque CP-A (2009) Assessing the impacts of flow diversion terraces on stream water and sediment yields at a watershed level using SWAT model. Agric Ecosyst Environ 132:23–31. doi:10.1016/j.agee.2009.02.012

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the EDIA, S.A. for providing the data. The authors also acknowledge the funding provided by ICT (Institute of Earth Sciences), under contract with FCT (the Portuguese Science and Technology Foundation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António Chambel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penha, A.M., Chambel, A., Murteira, M. et al. Influence of different land uses on groundwater quality in southern Portugal. Environ Earth Sci 75, 622 (2016). https://doi.org/10.1007/s12665-015-5038-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-5038-7

Keywords

Navigation