Skip to main content

Detection and analysis of badlands dynamics in the Chambal River Valley (India), during the last 40 (1971–2010) years

Abstract

This article reports major land use changes in India’s worst badland incised area. India, being an agriculture dependent economy, suffers a great economic loss to badlands. Strategically, it is important to know the state-of-the-art status on the dynamics of badlands. Furthermore, it is equally important to assess the processes and factors which contribute most towards it. This study, therefore, assesses the dynamics of badlands that have occurred from 1971 to 2010 using CORONA and GeoEye-1 satellite images. The study design includes 24 study plots of 1 km2 each, covering all the dimensions of the study area. Change detection analysis which was also verified on ground revealed that the areas covered by badlands are reducing at a greater rate than badland encroachment. Badlands were reduced by 20 % in the last ca. 40 years. Factors influencing the reduction of badlands cover were studied using a logistic regression model. Five factors found to significantly influencing the reduction in badlands area are (1) distance to Chambal River, (2) distance to river channels, (3) distance to settlement, (4) slope and (5) Contributing Area. The fitted model was validated using receiver operating characteristic (ROC) curve. This study failed to find a model with good discriminative power for badland encroachment. The statistical evidence in the light of field studies indicated that badlands in populated areas are increasingly transformed into cropland.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Adams BP (1987) Assessment of the 1987 chambal ravines aerial seeding programme. FAO, Rome

    Google Scholar 

  • Agarwal KK, Singh IB, Sharma M et al (2002) Extensional tectonic activity in the cratonward parts (peripheral bulge) of the Ganga Plain foreland basin, India. Int J Earth Sci 91:897–905. doi:10.1007/s00531-002-0265-z

    Article  Google Scholar 

  • Ahmad E (1968) Distribution and causes of gully erosion in India. In: 21st international geographical congress. New Delhi, p Section IV

  • Balooni K (2003) Economics of wasteland afforestation in India, a reveiw. New For 26:101–136

    Article  Google Scholar 

  • Boardman J, Parsons A, Holland R et al (2003) Development of badlands and gullies in the Sneeuberg, Great Karoo, South Africa. CATENA 50:165–184. doi:10.1016/S0341-8162(02)00144-3

    Article  Google Scholar 

  • Borselli L, Torri D, Øygarden L et al (2006) Land levelling. In: Boardman J, Poesen J (eds) Soil erosion in Europe. John Wiley & sons, West Sussex, pp 643–658

  • Bryan RB, Campbell IA, Yair A (1987) Postglacial geomorphic development of the Dinosaur Provincial Park badlands, Alberta. Can J Earth Sci 24:135–146. doi:10.1139/e87-011

    Article  Google Scholar 

  • Burrough PA, McDonell RA (1998) Principles of geographical information systems. Oxford University Press, New York

    Google Scholar 

  • Chatterjee RS, Saha SK, Kumar Suresh et al (2009) Interferometric SAR for characterization of ravines as a function of their density, depth, and surface cover. ISPRS J Photogramm Remote Sens 64:472–481. doi:10.1016/j.isprsjprs.2008.12.005

    Article  Google Scholar 

  • Chatterjee S, Krishna AP, Sharma AP (2014) Geospatial assessment of soil erosion vulnerability at watershed level in some sections of the Upper Subarnarekha river basin, Jharkhand, India. Environ Earth Sci 71:357–374. doi:10.1007/s12665-013-2439-3

    Article  Google Scholar 

  • Clarke ML, Rendell HM (2000) The impact of the farming practice of remodelling hillslope topography on badland morphology and soil erosion processes. CATENA 40:229–250. doi:10.1016/S0341-8162(99)00047-8

    Article  Google Scholar 

  • DeCelles PG (2011) Foreland basin systems revisited: variations in response to tectonic settings. In: Busby C, Azor A (eds) Tectonics of sedimentary basins. John Wiley & sons, New York, pp 405–426

  • Deshmukh DS, Chaube UC, Tignath S, Pingale SM (2011) Geomorphological Analysis and Distribution of Badland around the Confluence of Narmada and Sher River, India. Eur Water 36:15–26

    Google Scholar 

  • Desmet P, Poesen J, Govers G, Vandaele K (1999) Importance of slope gradient and contributing area for optimal prediction of the initiation and trajectory of ephemeral gullies. Catena 37:377–392

    Article  Google Scholar 

  • Feoli E, Vuerich LG, Woldu Z (2002) Processes of environmental degradation and opportunities for rehabilitation in Adwa, Northern Ethiopia. Landsc Ecol 17:315–325. doi:10.1023/A:1020566801067

    Article  Google Scholar 

  • Gallart F, Solé A, Puigdefàbregas J, Làzaro R (2002) Badland systems in the Mediterranean. In: Bull LJ, Kirkby MJ (eds) Dryland rivers: hydrology and geomorphology of semi-arid channels. John Wiley & sons, West Sussex

  • Gallart F, Marignani M, Pérez-Gallego N et al (2013) Thirty years of studies on badlands, from physical to vegetational approaches. A succinct review. CATENA 106:4–11. doi:10.1016/j.catena.2012.02.008

    Article  Google Scholar 

  • Geo Eye Product Guide (2009) Geo Eye Product Guide v1.0.1. 4

  • Gibling MR, Tandon SK, Sinha R, Jain M (2005) Discontinuity-bounded alluvial sequences of the Southern Gangetic Plains, India: aggradation and degradation in response to monsoonal strength. J Sediment Res 75:369–385. doi:10.2110/jsr.2005.029

    Article  Google Scholar 

  • Goossens R, De Wulf A, Bourgeois J et al (2006) Satellite imagery and archaeology: the example of CORONA in the Altai Mountains. J Archaeol Sci 33:745–755. doi:10.1016/j.jas.2005.10.010

    Article  Google Scholar 

  • Gupta M, Mohanty KK, Kumar D, Banerjee R (2014) Monitoring surface elevation changes in Jharia coalfield, India using synthetic aperture radar interferometry. Environ Earth Sci 71:2875–2883. doi:10.1007/s12665-013-2664-9

    Article  Google Scholar 

  • Haigh MJ (1984) Ravine erosion and reclamation in India. Geoforum 15:543–561. doi:10.1016/0016-7185(84)90024-1

    Article  Google Scholar 

  • Higuchi K, Chigira M, Lee D-H (2013) High rates of erosion and rapid weathering in a Plio-Pleistocene mudstone badland, Taiwan. CATENA. doi:10.1016/j.catena.2012.11.005

    Google Scholar 

  • Hosmer DW, Lemeshow S (2005) Applied logistic regression, 2nd edn

  • Howard AD (1997) Badland morphology and evolution: interpretation using a simulation model. Earth Surf Process Landf 22:211–227. doi:10.1002/(SICI)1096-9837(199703)22:3<211:AID-ESP749>3.0.CO;2-E

    Article  Google Scholar 

  • Howard AD (2009) Badlands and Gullying. In: Parsons AJ, Abrahams AD (eds) Geomorphology of desert environments. Springer, The Netherlands, pp 265–299

    Chapter  Google Scholar 

  • Joshi VU (2014) The Chambal Badlands. In: Kale VS (ed) Landscapes and landforms of India, 1st edn. Springer, Dordrecht, pp 143–149

    Chapter  Google Scholar 

  • Kottek M, Grieser J, Beck C et al (2006) World Map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263. doi:10.1127/0941-2948/2006/0130

    Article  Google Scholar 

  • Lukey B, Sheffield J, Bathurst J et al (2000) Test of the SHETRAN technology for modelling the impact of reforestation on badlands runoff and sediment yield at Draix, France. J Hydrol 235:44–62. doi:10.1016/S0022-1694(00)00260-2

    Article  Google Scholar 

  • National Remote Sensing Centre, India (2011) Wastelands Atlas of India (Change Analysis Based on Multi-Temporal Satellite Data of 2005–06 and 2008–09)

  • Nogueras P, Burjachs F, Gallart F, Puigdefàbregas J (2000) Recent gully erosion in the El Cautivo badlands (Tabernas, SE Spain). CATENA 40:203–215. doi:10.1016/S0341-8162(99)00048-X

    Article  Google Scholar 

  • Pani P, Carling P (2013) Land degradation and spatial vulnerabilities: a study of inter-village differences in Chambal Valley, India. Asian Geogr 30:65–79. doi:10.1080/10225706.2012.754775

    Article  Google Scholar 

  • Pani P, Mohapatra SN (2001) Delineation and monitoring of gullied and ravenous lands in a part of lower Chambal valley, India using remote sensing and GIS. In: Proc. ACRS. Singapore

  • Patton PC, Schumm SA (1975) Gully erosion, Northwestern Colorado: a threshold phenomenon. Geology 3:88–90. doi:10.1130/0091-7613(1975)3<88:GENCAT>2.0.CO;2

    Article  Google Scholar 

  • Phillips C (1998) The badlands of Italy: a vanishing landscape? Appl Geogr 18:243–257. doi:10.1016/S0143-6228(98)00005-8

    Article  Google Scholar 

  • Poesen J, Hooke J (1997) Erosion, flooding and channel management in Mediterranean environments of southern Europe. Prog Phys Geogr 21:157–199

    Article  Google Scholar 

  • Poesen J, Nachtergaele J, Verstraeten G, Valentin C (2003) Gully erosion and environmental change: importance and research needs. CATENA 50:91–133. doi:10.1016/S0341-8162(02)00143-1

    Article  Google Scholar 

  • Pontius RG Jr, Schneider LC (2001) Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agric Ecosyst Environ 85:239–248. doi:10.1016/S0167-8809(01)00187-6

    Article  Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing

  • Ranga V, Mohapatra SN, Pani P (2015a) Geomorphological Evolution of Badlands based on the dynamics of Palaeo-channels and their implications. J Earth Syst Sci 124:909–920. doi:10.1007/s12040-015-0589-2

    Article  Google Scholar 

  • Ranga V, Van Rompaey A, Poesen J et al (2015b) Semi-automatic delineation of badlands using contrast in vegetation activity: a case study in the lower Chambal valley, India. Geocarto Int. doi:10.1080/10106049.2015.1004130

    Google Scholar 

  • Schumm SA (1956) Evolution of drainage systems and slopes in Badlands at Perth Amboy, New Jersey. Geol Soc Am Bull 67:597–646. doi:10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2

  • Sharma HS (1968) Genesis of Ravines of the Lower Chambal Valley, India. In: 21st international geographical congress. New Delhi, p Section IV

  • Sharma HS (1979) The physiography of the lower chambal valley and its agricultural development: a study in applied geomorphology. Concept Publishing, New Delhi

  • Singh SK, Srivastava PK, Gupta M et al (2014) Appraisal of land use/land cover of mangrove forest ecosystem using support vector machine. Environ Earth Sci 71:2245–2255

    Article  Google Scholar 

  • Sohn H-G, Kim G-H, Yom J-H (2004) Mathematical modelling of historical reconnaissance CORONA KH-4B Imagery. Photogramm Rec 19:51–66. doi:10.1046/j.0031-868X.2003.00257.x

    Article  Google Scholar 

  • Torri D, Calzolari C, Rodolfi G (2000) Badlands in changing environments: an introduction. CATENA 40:119–125. doi:10.1016/S0341-8162(00)00119-3

    Article  Google Scholar 

  • Van Dessel W, Van Rompaey A, Poelmans L, Szilassi P (2008) Predicting land cover changes and their impact on the sediment influx in the Lake Balaton catchment. Landsc Ecol 23:645–656. doi:10.1007/s10980-008-9227-6

    Article  Google Scholar 

  • Van Reeuwijk LP (ed) (1995) Procedures of soil analysis, Fifth. ISRIC Technical Paper 9, Wageningen, The Netherlands

  • Vandekerkchove L, Poesen J, Oostwoud-Wijdenes D et al (2000) Thresholds for gully initiation and sedimentation in Mediterranean Europe. Earth Surf Process Landf ISSN 0197–9337

  • Vermeiren K, Van Rompaey A, Loopmans M et al (2012) Urban growth of Kampala, Uganda: pattern analysis and scenario development. Landsc Urban Plan 106:199–206. doi:10.1016/j.landurbplan.2012.03.006

    Article  Google Scholar 

  • Yadav RC, Bhushan LS (2002) Conservation of gullies in susceptible riparian areas of alluvial soil regions. Land Degrad Dev 13:201–219. doi:10.1002/ldr.493

    Article  Google Scholar 

Websites

Download references

Acknowledgments

The authors would like to thank Erasmus Mundus External Program window 13 for financing the first author’s stay at KU Leuven. The authors would also like to acknowledge the help of GeoEye foundation, who provided the GeoEye satellite image for this research. The authors are also grateful to Dr. R. Chitra, Joint Director, Central Soil and Materials Research Station, New Delhi for providing laboratory facilities for soil analyses. The authors are thankful to two anonymous reviewers for their constructive criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ranga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ranga, V., Poesen, J., Van Rompaey, A. et al. Detection and analysis of badlands dynamics in the Chambal River Valley (India), during the last 40 (1971–2010) years. Environ Earth Sci 75, 183 (2016). https://doi.org/10.1007/s12665-015-5017-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-5017-z

Keywords

  • Badlands
  • Chambal valley
  • CORONA
  • GeoEye-1
  • Logistic regression
  • ROC
  • Change detection