Environmental Earth Sciences

, 75:183 | Cite as

Detection and analysis of badlands dynamics in the Chambal River Valley (India), during the last 40 (1971–2010) years

  • V. Ranga
  • J. Poesen
  • A. Van Rompaey
  • S. N. Mohapatra
  • P. Pani
Original Article


This article reports major land use changes in India’s worst badland incised area. India, being an agriculture dependent economy, suffers a great economic loss to badlands. Strategically, it is important to know the state-of-the-art status on the dynamics of badlands. Furthermore, it is equally important to assess the processes and factors which contribute most towards it. This study, therefore, assesses the dynamics of badlands that have occurred from 1971 to 2010 using CORONA and GeoEye-1 satellite images. The study design includes 24 study plots of 1 km2 each, covering all the dimensions of the study area. Change detection analysis which was also verified on ground revealed that the areas covered by badlands are reducing at a greater rate than badland encroachment. Badlands were reduced by 20 % in the last ca. 40 years. Factors influencing the reduction of badlands cover were studied using a logistic regression model. Five factors found to significantly influencing the reduction in badlands area are (1) distance to Chambal River, (2) distance to river channels, (3) distance to settlement, (4) slope and (5) Contributing Area. The fitted model was validated using receiver operating characteristic (ROC) curve. This study failed to find a model with good discriminative power for badland encroachment. The statistical evidence in the light of field studies indicated that badlands in populated areas are increasingly transformed into cropland.


Badlands Chambal valley CORONA GeoEye-1 Logistic regression ROC Change detection 


  1. Adams BP (1987) Assessment of the 1987 chambal ravines aerial seeding programme. FAO, RomeGoogle Scholar
  2. Agarwal KK, Singh IB, Sharma M et al (2002) Extensional tectonic activity in the cratonward parts (peripheral bulge) of the Ganga Plain foreland basin, India. Int J Earth Sci 91:897–905. doi:10.1007/s00531-002-0265-z CrossRefGoogle Scholar
  3. Ahmad E (1968) Distribution and causes of gully erosion in India. In: 21st international geographical congress. New Delhi, p Section IVGoogle Scholar
  4. Balooni K (2003) Economics of wasteland afforestation in India, a reveiw. New For 26:101–136CrossRefGoogle Scholar
  5. Boardman J, Parsons A, Holland R et al (2003) Development of badlands and gullies in the Sneeuberg, Great Karoo, South Africa. CATENA 50:165–184. doi:10.1016/S0341-8162(02)00144-3 CrossRefGoogle Scholar
  6. Borselli L, Torri D, Øygarden L et al (2006) Land levelling. In: Boardman J, Poesen J (eds) Soil erosion in Europe. John Wiley & sons, West Sussex, pp 643–658Google Scholar
  7. Bryan RB, Campbell IA, Yair A (1987) Postglacial geomorphic development of the Dinosaur Provincial Park badlands, Alberta. Can J Earth Sci 24:135–146. doi:10.1139/e87-011 CrossRefGoogle Scholar
  8. Burrough PA, McDonell RA (1998) Principles of geographical information systems. Oxford University Press, New YorkGoogle Scholar
  9. Chatterjee RS, Saha SK, Kumar Suresh et al (2009) Interferometric SAR for characterization of ravines as a function of their density, depth, and surface cover. ISPRS J Photogramm Remote Sens 64:472–481. doi:10.1016/j.isprsjprs.2008.12.005 CrossRefGoogle Scholar
  10. Chatterjee S, Krishna AP, Sharma AP (2014) Geospatial assessment of soil erosion vulnerability at watershed level in some sections of the Upper Subarnarekha river basin, Jharkhand, India. Environ Earth Sci 71:357–374. doi:10.1007/s12665-013-2439-3 CrossRefGoogle Scholar
  11. Clarke ML, Rendell HM (2000) The impact of the farming practice of remodelling hillslope topography on badland morphology and soil erosion processes. CATENA 40:229–250. doi:10.1016/S0341-8162(99)00047-8 CrossRefGoogle Scholar
  12. DeCelles PG (2011) Foreland basin systems revisited: variations in response to tectonic settings. In: Busby C, Azor A (eds) Tectonics of sedimentary basins. John Wiley & sons, New York, pp 405–426Google Scholar
  13. Deshmukh DS, Chaube UC, Tignath S, Pingale SM (2011) Geomorphological Analysis and Distribution of Badland around the Confluence of Narmada and Sher River, India. Eur Water 36:15–26Google Scholar
  14. Desmet P, Poesen J, Govers G, Vandaele K (1999) Importance of slope gradient and contributing area for optimal prediction of the initiation and trajectory of ephemeral gullies. Catena 37:377–392CrossRefGoogle Scholar
  15. Feoli E, Vuerich LG, Woldu Z (2002) Processes of environmental degradation and opportunities for rehabilitation in Adwa, Northern Ethiopia. Landsc Ecol 17:315–325. doi:10.1023/A:1020566801067 CrossRefGoogle Scholar
  16. Gallart F, Solé A, Puigdefàbregas J, Làzaro R (2002) Badland systems in the Mediterranean. In: Bull LJ, Kirkby MJ (eds) Dryland rivers: hydrology and geomorphology of semi-arid channels. John Wiley & sons, West SussexGoogle Scholar
  17. Gallart F, Marignani M, Pérez-Gallego N et al (2013) Thirty years of studies on badlands, from physical to vegetational approaches. A succinct review. CATENA 106:4–11. doi:10.1016/j.catena.2012.02.008 CrossRefGoogle Scholar
  18. Geo Eye Product Guide (2009) Geo Eye Product Guide v1.0.1. 4Google Scholar
  19. Gibling MR, Tandon SK, Sinha R, Jain M (2005) Discontinuity-bounded alluvial sequences of the Southern Gangetic Plains, India: aggradation and degradation in response to monsoonal strength. J Sediment Res 75:369–385. doi:10.2110/jsr.2005.029 CrossRefGoogle Scholar
  20. Goossens R, De Wulf A, Bourgeois J et al (2006) Satellite imagery and archaeology: the example of CORONA in the Altai Mountains. J Archaeol Sci 33:745–755. doi:10.1016/j.jas.2005.10.010 CrossRefGoogle Scholar
  21. Gupta M, Mohanty KK, Kumar D, Banerjee R (2014) Monitoring surface elevation changes in Jharia coalfield, India using synthetic aperture radar interferometry. Environ Earth Sci 71:2875–2883. doi:10.1007/s12665-013-2664-9 CrossRefGoogle Scholar
  22. Haigh MJ (1984) Ravine erosion and reclamation in India. Geoforum 15:543–561. doi:10.1016/0016-7185(84)90024-1 CrossRefGoogle Scholar
  23. Higuchi K, Chigira M, Lee D-H (2013) High rates of erosion and rapid weathering in a Plio-Pleistocene mudstone badland, Taiwan. CATENA. doi:10.1016/j.catena.2012.11.005 Google Scholar
  24. Hosmer DW, Lemeshow S (2005) Applied logistic regression, 2nd ednGoogle Scholar
  25. Howard AD (1997) Badland morphology and evolution: interpretation using a simulation model. Earth Surf Process Landf 22:211–227. doi:10.1002/(SICI)1096-9837(199703)22:3<211:AID-ESP749>3.0.CO;2-E CrossRefGoogle Scholar
  26. Howard AD (2009) Badlands and Gullying. In: Parsons AJ, Abrahams AD (eds) Geomorphology of desert environments. Springer, The Netherlands, pp 265–299CrossRefGoogle Scholar
  27. Joshi VU (2014) The Chambal Badlands. In: Kale VS (ed) Landscapes and landforms of India, 1st edn. Springer, Dordrecht, pp 143–149CrossRefGoogle Scholar
  28. Kottek M, Grieser J, Beck C et al (2006) World Map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263. doi:10.1127/0941-2948/2006/0130 CrossRefGoogle Scholar
  29. Lukey B, Sheffield J, Bathurst J et al (2000) Test of the SHETRAN technology for modelling the impact of reforestation on badlands runoff and sediment yield at Draix, France. J Hydrol 235:44–62. doi:10.1016/S0022-1694(00)00260-2 CrossRefGoogle Scholar
  30. National Remote Sensing Centre, India (2011) Wastelands Atlas of India (Change Analysis Based on Multi-Temporal Satellite Data of 2005–06 and 2008–09)Google Scholar
  31. Nogueras P, Burjachs F, Gallart F, Puigdefàbregas J (2000) Recent gully erosion in the El Cautivo badlands (Tabernas, SE Spain). CATENA 40:203–215. doi:10.1016/S0341-8162(99)00048-X CrossRefGoogle Scholar
  32. Pani P, Carling P (2013) Land degradation and spatial vulnerabilities: a study of inter-village differences in Chambal Valley, India. Asian Geogr 30:65–79. doi:10.1080/10225706.2012.754775 CrossRefGoogle Scholar
  33. Pani P, Mohapatra SN (2001) Delineation and monitoring of gullied and ravenous lands in a part of lower Chambal valley, India using remote sensing and GIS. In: Proc. ACRS. SingaporeGoogle Scholar
  34. Patton PC, Schumm SA (1975) Gully erosion, Northwestern Colorado: a threshold phenomenon. Geology 3:88–90. doi:10.1130/0091-7613(1975)3<88:GENCAT>2.0.CO;2 CrossRefGoogle Scholar
  35. Phillips C (1998) The badlands of Italy: a vanishing landscape? Appl Geogr 18:243–257. doi:10.1016/S0143-6228(98)00005-8 CrossRefGoogle Scholar
  36. Poesen J, Hooke J (1997) Erosion, flooding and channel management in Mediterranean environments of southern Europe. Prog Phys Geogr 21:157–199CrossRefGoogle Scholar
  37. Poesen J, Nachtergaele J, Verstraeten G, Valentin C (2003) Gully erosion and environmental change: importance and research needs. CATENA 50:91–133. doi:10.1016/S0341-8162(02)00143-1 CrossRefGoogle Scholar
  38. Pontius RG Jr, Schneider LC (2001) Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agric Ecosyst Environ 85:239–248. doi:10.1016/S0167-8809(01)00187-6 CrossRefGoogle Scholar
  39. R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical ComputingGoogle Scholar
  40. Ranga V, Mohapatra SN, Pani P (2015a) Geomorphological Evolution of Badlands based on the dynamics of Palaeo-channels and their implications. J Earth Syst Sci 124:909–920. doi:10.1007/s12040-015-0589-2 CrossRefGoogle Scholar
  41. Ranga V, Van Rompaey A, Poesen J et al (2015b) Semi-automatic delineation of badlands using contrast in vegetation activity: a case study in the lower Chambal valley, India. Geocarto Int. doi:10.1080/10106049.2015.1004130 Google Scholar
  42. Schumm SA (1956) Evolution of drainage systems and slopes in Badlands at Perth Amboy, New Jersey. Geol Soc Am Bull 67:597–646. doi:10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2Google Scholar
  43. Sharma HS (1968) Genesis of Ravines of the Lower Chambal Valley, India. In: 21st international geographical congress. New Delhi, p Section IVGoogle Scholar
  44. Sharma HS (1979) The physiography of the lower chambal valley and its agricultural development: a study in applied geomorphology. Concept Publishing, New DelhiGoogle Scholar
  45. Singh SK, Srivastava PK, Gupta M et al (2014) Appraisal of land use/land cover of mangrove forest ecosystem using support vector machine. Environ Earth Sci 71:2245–2255CrossRefGoogle Scholar
  46. Sohn H-G, Kim G-H, Yom J-H (2004) Mathematical modelling of historical reconnaissance CORONA KH-4B Imagery. Photogramm Rec 19:51–66. doi:10.1046/j.0031-868X.2003.00257.x CrossRefGoogle Scholar
  47. Torri D, Calzolari C, Rodolfi G (2000) Badlands in changing environments: an introduction. CATENA 40:119–125. doi:10.1016/S0341-8162(00)00119-3 CrossRefGoogle Scholar
  48. Van Dessel W, Van Rompaey A, Poelmans L, Szilassi P (2008) Predicting land cover changes and their impact on the sediment influx in the Lake Balaton catchment. Landsc Ecol 23:645–656. doi:10.1007/s10980-008-9227-6 CrossRefGoogle Scholar
  49. Van Reeuwijk LP (ed) (1995) Procedures of soil analysis, Fifth. ISRIC Technical Paper 9, Wageningen, The NetherlandsGoogle Scholar
  50. Vandekerkchove L, Poesen J, Oostwoud-Wijdenes D et al (2000) Thresholds for gully initiation and sedimentation in Mediterranean Europe. Earth Surf Process Landf ISSN 0197–9337Google Scholar
  51. Vermeiren K, Van Rompaey A, Loopmans M et al (2012) Urban growth of Kampala, Uganda: pattern analysis and scenario development. Landsc Urban Plan 106:199–206. doi:10.1016/j.landurbplan.2012.03.006 CrossRefGoogle Scholar
  52. Yadav RC, Bhushan LS (2002) Conservation of gullies in susceptible riparian areas of alluvial soil regions. Land Degrad Dev 13:201–219. doi:10.1002/ldr.493 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Centre of Excellence for NRDMS in Uttarakhand, Department of GeographyKumaun UniversityAlmoraIndia
  2. 2.Division of Geography, Department of Earth and Environmental SciencesCatholic University LeuvenHeverleeBelgium
  3. 3.Centre of Remote Sensing and GIS, School of Studies in Earth ScienceJiwaji UniversityGwaliorIndia
  4. 4.Centre for the Study of Regional DevelopmentJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations