Skip to main content
Log in

Hybrid auto-regressive neural network model for estimating global solar radiation in Bandar Abbas, Iran

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

A Correction to this article was published on 01 July 2020

This article has been updated

Abstract

In this paper, a neural network auto-regressive model with exogenous inputs (NN-ARX) is utilized for predicting daily horizontal global solar radiation (DHGSR). For this aim, two sets of parameters: (1) sunshine hours (n) and maximum possible sunshine hours (N), and (2) maximum ambient temperature (T max) and minimum ambient temperature (T min) collected for Bandar Abbas city of Iran are used as inputs. The efficiency of NN-ARX is compared with that of the adaptive neuro-fuzzy inference system (ANFIS), which is a robust methodology. The attained results reveal the superiority of sunshine hours as input over air temperatures so that the NN-ARX (1) and ANFIS (1) models using n and N as inputs offer higher precision than the NN-ARX (2) and ANFIS (2) models using T max and T min as inputs. Statistical results demonstrate that NN-ARX provides favorable precision and outperforms ANFIS. The relative percentage error analysis shows that the capability of the ANN-ARX (1) model in different days of the year is indeed attractive since 89.25 % of the predictions fall within the acceptable range of −10 to +10 %. The influence of introducing extraterrestrial solar radiation (H o ) as third input on the performance of the NN-ARX models is assessed. It is found that using H o provides only slight improvements on accuracy for both sunshine duration and temperature-based predictions; thus, considering H o as the third input may not be really suitable since it also brings further complexity in terms of the required inputs. The survey results prove that NN-ARX would be an efficient alternative approach to predict DHGSR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 01 July 2020

    Correction to: Environ

References

  • Abdalla YAG (1994) New correlation of global solar radiation with meteorological parameters for Bahrain. Int J Sol Energy 16:111–120

    Article  Google Scholar 

  • Abdul Azeez MA (2011) Artificial neural network estimation of global solar radiation using meteorological parameters in Gusau, Nigeria. Arch Appl Sci Res 3(2):586–595

    Google Scholar 

  • Almorox J, Hontoria C, Benito M (2011) Models for obtaining daily global solar radiation with measured air temperature data in Madrid (Spain). Appl Energy 88:1703–1709

    Article  Google Scholar 

  • Azadeh A, Maghsoudi A, Sohrabkhani S (2009) An integrated artificial neural networks approach for predicting global radiation. Energy Convers Manage 50:1497–1505

    Article  Google Scholar 

  • Bahel V, Bakhsh H, Srinivasan R (1987) A correlation for estimation of global solar radiation. Energy 12:131–135

    Article  Google Scholar 

  • Bakirci K (2009) Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey. Energy 34:485–501

    Article  Google Scholar 

  • Boland J, Huang J, Ridley B (2013) Decomposing global solar radiation into its direct and diffuse components. Renew Sustain Energy Rev 28:749–756

    Article  Google Scholar 

  • Bosch JL, Lopez G, Batlles FJ (2008) Daily solar irradiation estimation over a mountainous area using artificial neural networks. Renew Energy 33:1622–1628

    Article  Google Scholar 

  • Demirhan H, Atilgan YK (2015) New horizontal global solar radiation estimation models for Turkey based on robust coplot supported genetic programming technique. Energy Convers Manage 106:1013–1023

    Article  Google Scholar 

  • Diagne M, David M, Lauret P, Boland J, Schmutz N (2013) Review of solar irradiance forecasting methods and a proposition for small-scale insular grids. Renew Sustain Energy Rev 27:65–76

    Article  Google Scholar 

  • Dos Santos CM, De Souza JL, Ferreira Junior RA, Tibab C, de Melo RO, Lyra GB et al (2014) On modeling global solar irradiation using air temperature for Alagoas State, Northeastern Brazil. Energy 71:388–398

    Article  Google Scholar 

  • Duffie JA, Beckman WA (2006) Solar engineering of thermal processes, 3rd edn. Wiley, New York

    Google Scholar 

  • Duzen H, Aydin H (2012) Sunshine-based estimation of global solar radiation on horizontal surface at Lake Van region (Turkey). Energy Convers Manage 58:35–46

    Article  Google Scholar 

  • Ertekin C, Yaldiz O (2000) Comparison of some existing models for estimating global solar radiation for Antalya (Turkey). Energy Convers Manage 41:311–330

    Article  Google Scholar 

  • Garg HP, Garg ST (1982) Prediction of global solar radiation from bright sunshine hours and other meteorological parameters. In: Solar-India, proceedings of the national solar energy convention. Allied Publishers, New Delhi, pp 1004–1007

  • Güçlü YS, Yelegen MÖ, Dabanlı İ, Şişman E (2014) Solar irradiation estimations and comparisons by ANFIS, Angström-Prescott and dependency models. Sol Energy 109:118–124

    Article  Google Scholar 

  • Halawa E, GhaffarianHoseini AH, Li DHW (2014) Empirical correlations as a means for estimating monthly average daily global radiation: a critical overview. Renew Energy 272:149–153

    Article  Google Scholar 

  • Izady A, Davary K, Alizadeh A, Moghaddam Nia A, Ziaei AN, Hasheminia SM (2013) Application of NN-ARX model to predict groundwater levels in the Neishaboor Plain, Iran. Water Resour Manage 27:4773–4794

    Article  Google Scholar 

  • Izgi E, Öztopal A, Yerli B, Kaymak MK, Şahin AD (2012) Short–mid-term solar power prediction by using artificial neural networks. Sol Energy 86:725–733

    Article  Google Scholar 

  • Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference systems. IEEE Trans Syst Man Cybern 23:665–685

    Article  Google Scholar 

  • Jang JSR, Sun CT (1995) Neuro-fuzzy modeling and control. Proc IEEE 83:378–406

    Article  Google Scholar 

  • Jiang Y (2009a) Computation of monthly mean daily global solar radiation in China using artificial neural networks and comparison with other empirical models. Energy 34:1276–1283

    Article  Google Scholar 

  • Jiang Y (2009b) Estimation of monthly mean daily diffuse radiation in China. Appl Energy 86:1458–1464

    Article  Google Scholar 

  • Kalogirou SA (2009) Solar energy engineering: processes and systems, 1st edn. Elsevier Inc, London

    Google Scholar 

  • Kariminia S, Motamedi S, Shamshirband S, Piri J, Mohammadi K, Hashim R et al (2015) Modelling thermal comfort of visitors at urban squares in hot and arid climate using NN-ARX soft computing method. Theor Appl Climatol. doi:10.1007/s00704-015-1462-6

    Google Scholar 

  • Karthikeyan S, Ravikumar Solomon G, Kumaresan V, Velraj R (2014) Parametric studies on packed bed storage unit filled with PCM encapsulated spherical containers for low temperature solar air heating applications. Energy Convers Manage 78:74–80

    Article  Google Scholar 

  • Keshavarz E, Roopaei M (2006) Intelligent structures in economical forecasting. In: Proceedings of the international conference on advanced technologies in tele-communications and control engineering (ATTCE)

  • Kishor N (2008) Nonlinear predictive control to track deviated power of an identified NNARX model of a hydro plant. Expert Syst Appl 35:1741–1751

    Article  Google Scholar 

  • Kishor N, Singh SP (2007) Simulated response of NN based identification and predictive control of hydro plant. Expert Syst Appl 32:233–244

    Article  Google Scholar 

  • Koca A, Oztop HF, Varol Y, Koca GO (2011) Estimation of solar radiation using artificial neural networks with different input parameters for Mediterranean region of Anatolia in Turkey. Expert Syst Appl 38:8756–8762

    Article  Google Scholar 

  • Li H, Ma W, Lian Y, Wang X, Zhao L (2011) Global solar radiation estimation with sunshine duration in Tibet, China. Renew Energy 36:3141–3145

    Article  Google Scholar 

  • Li MF, Tang XP, Wu W, Liu HB (2013) General models for estimating daily global solar radiation for different solar radiation zones in mainland China. Energy Convers Manage 70:139–148

    Article  Google Scholar 

  • Linares-Rodriguez A, Ruiz-Arias JA, Pozo-Vazquez D, Tovar-Pescador J (2013) An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images. Energy 61:636–645

    Article  Google Scholar 

  • Ljung L (1999) System identification. Theory for the user. Prentice-Hall PTR, Englewood Cliffs, NJ

    Google Scholar 

  • Mohammadi M, Shamshirband S, Anisi MH, Alam KA, Petkovic D (2015) Support vector regression based prediction of global solar radiation on a horizontal surface. Energy Convers Manage 91:433–441

    Article  Google Scholar 

  • Mohandes MA (2012) Modeling global solar radiation using particle swarm optimization (PSO). Sol Energy 86:3137–3145

    Article  Google Scholar 

  • Mohanty S (2014) ANFIS based prediction of monthly average global solar radiation over Bhubaneswar (State of Odisha). Int J Ethics Eng Manage Educ ISSN 1(5):2348–4748

    Google Scholar 

  • Mohanty S, Patra PK, Sahoo SS (2015) Comparison and prediction of monthly average solar radiation data using soft computing approach for Eastern India. Comput Intel Data Min-Vol 3. Smart Innov, Syst Technol 33:317–326

    Article  Google Scholar 

  • Mubiru J, Banda EJKB (2008) Estimation of monthly average daily global solar irradiation using artificial neural networks. Sol Energy 82:181–187

    Article  Google Scholar 

  • Ododo JC, Sulaiman AT, Aidan J, Yguda MM, Ogbu FA (1995) The importance of maximum air temperature in the parameterization of solar radiation in Nigeria. Renew Energy 6:751–763

    Article  Google Scholar 

  • Ojosu JO, Komolafe LK (1987) Models for estimating solar radiation availability in South Western Nigeria. Niger J Solar Energy 6:69–77

    Google Scholar 

  • Olatomiwa L, Mekhilef S, Shamshirband S, Petkovic D (2015a) Potential of support vector regression for solar radiation prediction in Nigeria. Nat Hazards. doi:10.1007/s11069-015-1641-x

    Google Scholar 

  • Olatomiwa L, Mekhilef S, Shamshirband S, Petkovic D (2015b) Adaptive neuro-fuzzy approach for solar radiation prediction in Nigeria. Renew Sustain Energy Rev 51:1784–1791

    Article  Google Scholar 

  • Patil SL, Tantau HJ, Salokhe VM (2008) Modelling of tropical greenhouse temperature by auto regressive and neural network models. Bio Syst Eng 99:423–431

    Google Scholar 

  • Paulescu ET, Paulescu M (2008) Fuzzy modeling of solar irradiation using air temperature data. Theor Appl Clim 91:181–192

    Article  Google Scholar 

  • Piri J, Amin S, Moghaddamnia A, Han D, Remesun D (2009) Daily pan evaporation modelling is hot and dry climate. J Hydrol Eng 14:803–811

    Article  Google Scholar 

  • Piri J, Shamshirband Sh, Petković D, Tong CW, ur Rehman MH (2015) Prediction of the solar radiation on the earth using support vector regression technique. Infrared Phys Technol 68:179–185

    Article  Google Scholar 

  • Rahimikhoob A (2010) Estimating global solar radiation using artificial neural network and air temperature data in a semi-arid environment. Renew Energy 35:2131–2135

    Article  Google Scholar 

  • Rehman S, Mohandes M (2008) Artificial neural network estimation of global solar radiation using air temperature and relative humidity. Energy Policy 36:571–576

    Article  Google Scholar 

  • Rizwan M, Jamil M, Kirmani S, Kothari DP (2014) Fuzzy logic based modeling and estimation of global solar energy using meteorological parameters. Energy 70:685–691

    Article  Google Scholar 

  • Sumithira TR, Kumar AN (2012) Prediction of monthly global solar radiation using adaptive neuro fuzzy inference system (ANFIS) technique over the state of Tamil Nadu (India): a comparative study. Appl Sol Energy 48(2):140–145

    Article  Google Scholar 

  • Trabea AA, Shaltout MAM (2000) Correlation of global solar radiation with meteorological parameters over Egypt. Renew Energy 21:297–308

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahaboddin Shamshirband.

Appendices

Appendix 1

The daily clearness index, K T , can be computed by (Duffie and Beckman 2006; Kalogirou 2009):

$$K_{T} = \frac{H}{{H_{o} }}$$

The daily extraterrestrial solar radiation on a horizontal surface, H o , is expressed as (Duffie and Beckman 2006; Kalogirou 2009):

$$H_{o} = \frac{24 \times 3600}{\pi }G_{\text{sc}} \left( {1 + 0.033\cos \,\frac{{360{\kern 1pt} \,n_{\text{day}} }}{365}} \right) \times \left( {\cos \varphi \,\cos \delta \,\sin \omega_{\text{s}} + \frac{{\pi \omega_{\text{s}} }}{180}\,\sin \varphi \sin \delta } \right)$$

where G sc is the solar constant, assumed equal to 1367 W/m2 and n day is the day number of the year, counted from the first of January (Duffie and Beckman 2006). δ and ω s are the daily solar declination and sunset hour angles, respectively, as (Duffie and Beckman 2006):

$$\delta = 23.45\,\sin \left( {\frac{{\left( {n_{\text{day}} + 284} \right)360}}{365}} \right)$$
$$\omega_{\text{s}} = \cos^{ - 1} \left( { - \tan \varphi \,\tan \delta } \right)$$

The daily maximum possible sunshine duration is (Duffie and Beckman 2006):\(N = \frac{2}{15}\cos^{ - 1} \left( { - \tan \varphi \,\tan \delta } \right)\)

Appendix 2

The RPE, which its values ranging between −10 and +10 % is usually considered acceptable (Ertekin and Yaldiz 2000), is defined as:

$${\text{RPE}} = \left( {\frac{{H_{i,c} - H_{i,m} }}{{H_{i,m} }}} \right) \times 100$$

where H i,c is the ith calculated global solar radiation value by the models and H i,m is the ith measured global solar radiation value.

The MAPE and the MABE are given, respectively by:

$${\text{MAPE}} = \frac{1}{N}\sum\limits_{i = 1}^{N} {\left| {\frac{{H_{i,c} - H_{i,m} }}{{H_{i,m} }}} \right| \times 100}$$
$${\text{MABE}} = \frac{1}{N}\sum\limits_{i = 1}^{N} {\left| {H_{i,c} - H_{i,m} } \right|}$$

where N is the total number of data.

The RMSE is calculated by:

$${\text{RMSE}} = \sqrt {\frac{1}{N}\sum\limits_{i = 1}^{N} {\left( {H_{i,c} - H_{i,m} } \right)}^{2} }$$

The RRMSE in percent is achieved by dividing the RMSE to the averaged measured values, which is defined by:

$${\text{RRMSE}} = \frac{{\sqrt {\frac{1}{N}\sum\limits_{i = 1}^{N} {\left( {H_{i,c} - H_{i,m} } \right)}^{2} } }}{{\frac{1}{N}\sum\limits_{i = 1}^{N} {H_{i,m} } }} \times 100$$

Different ranges of RRMSE can be defined to represent the models’ precision as follows (Li et al. 2013):

Excellent for RRMSE < 10 %;

Good for 10 % < RRMSE < 20 %;

Fair for 20 % < RRMSE < 30 %;

Poor for RRMSE > 30 %.

The R is computed by:

$$R = \frac{{\sum\limits_{i = 1}^{N} {\left( {H_{i,c} - H_{{c,{\text{avg}}}} } \right).} \left( {H_{i,m} - H_{{m,{\text{avg}}}} } \right)}}{{\sqrt {\left[ {\sum\limits_{i = 1}^{N} {\left( {H_{i,c} - H_{{c,{\text{avg}}}} } \right)^{2} } } \right]\left[ {\sum\limits_{i = 1}^{N} {\left( {H_{i,m} - H_{{m,{\text{avg}}}} } \right)^{2} } } \right]} }}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamshirband, S., Mohammadi, K., Piri, J. et al. Hybrid auto-regressive neural network model for estimating global solar radiation in Bandar Abbas, Iran. Environ Earth Sci 75, 172 (2016). https://doi.org/10.1007/s12665-015-4970-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-4970-x

Keywords

Navigation