Skip to main content
Log in

Cu(II) adsorption from aqueous solution using red mud activated by chemical and thermal treatment

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Brazil is the third-largest producer of aluminium, with the red mud generated during the extraction of aluminium from bauxite through the Bayer process. The red mud has been studied for use as an adsorbent for removing of elements/compounds from wastewater and/or contaminated soil. However, there are several compounds and treatments that were not tested yet. In this study, the Cu(II) adsorption potential for natural red mud (NRN) and red mud activated by thermal treatment at 400 °C (TRM) and chemical treatment with hydrochloric acid (HCl) at 0.05 mol L−1 (CRM1) and calcium nitrate [Ca(NO3)2] 0.1 mol L−1 (CRM2) was evaluated using adsorption isotherms obtained by the Langmuir and Freundlich models. The NRM and TRM presented Cu(II) adsorptions of ca. 100 % in aqueous solution with lower concentrations of the metal (0.5 and 1.0 mmol 25 mL−1). The Langmuir isotherm was more appropriate to describe the phenomenon of Cu(II) removal using NRM, TRM, CRM1 and CRM2, with the thermally activated red mud presenting the highest adsorption capacity at 2.08 mmol g−1 for Cu(II). Thus, these results indicate that TRM has the potential for use in applications that treat effluents and/or contaminated soil from industrial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrawal A, Sahu KK, Pandey BD (2004) A comparative adsorption study of copper on various industrial solid wastes. AIChE J 50:2430–2438

    Article  Google Scholar 

  • Aguiar MRMP, Novaes AC, Guarino AWS (2002) Remoção de metais pesados de efluentes industriais por aluminossilicatos. Quim Nova 25:1145–1154

    Article  Google Scholar 

  • Anna B, Kleopas M, Constantine S, Anestis F, Maria B (2015) Adsorption of Cd(II), Cu(II), Ni(II) and Pb(II) onto natural bentonite: study in mono- and multi-metal systems. Environ Earth Sci 73:5435–5444

    Article  Google Scholar 

  • Antunes MLP, Couperthwaite SJ, Conceição FT, Jesus CPC, Kiyohara PK, Coelho ACV, Frost RL (2012) Red mud from Brazil: thermal behavior and physical properties. Ind Eng Chem Res 51:775–779

    Article  Google Scholar 

  • Apak R, Guclu K, Turgut MH (1998a) Modeling of copper(II), cadmium(II) and lead(II) adsorption on red mud. J Colloids Interf Sci 203:122–130

    Article  Google Scholar 

  • Apak R, Tütem E, Hügül M, Hizal J (1998b) Heavy metal cation retention by unconventional sorbents (red muds and fly ashes). Water Res 32:430–440

    Article  Google Scholar 

  • Aragão DM, Arguelho MLPM, Alves JPH, Prado CMO (2013) Estudo Comparativo da Adsorção de Pb(II), Cd(II) e Cu(II) em Argila Natural Caulinítica e Contendo Montmorilonita. Orbital Electron J Chem 5:157–163

    Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  Google Scholar 

  • Castaldi P, Silvetti M, Garau G, Demurtas D, Deiana S (2015) Copper(II) and lead(II) removal from aqueous solution by water treatment residues. J Hazard Mater 283:140–147

    Article  Google Scholar 

  • Cetesb (2012) Ficha de Informação Toxicológica. Cobre. http://www.cetesb.sp.gov.br/userfiles/file/laboratorios/fit/cobre.pdf. Accessed 12 Sept 2012

  • Claessen MEC (org.) (1997) Manual de métodos de análise de solo, 2nd edn. EMBRAPA-CNPS, Rio de Janeiro

    Google Scholar 

  • Di Bernardo L, Dantas AD (2005) Métodos e técnicas de tratamento de água—2 V, 2nd edn. RiMa, São Carlos

    Google Scholar 

  • EPA (2014) Environmental Protection Agency, Electronic code of federal regulations. Title 40, Part 261, Sect 4 (b) (7) (ii) (c). http://ecfr.gpoaccess.gov. Accessed 25 Aug 2014

  • Ge Y, Cui X, Kong Y, Li Z, He Y, Zhou Q (2015) Porous geopolymeric spheres for removal of Cu(II) from aqueous solution: synthesis and evaluation. J Hazard Mater 283:244–251

    Article  Google Scholar 

  • Geremias R, Laus R, Fávere VT, Pedrosa RC (2012) Adsorção de íons Cu(II), Mn(II), Zn(II) e Fe(III), utilizando rejeito de mineração de carvão como adsorvente. Rev Bras Cienc Amb 25:48–59

    Google Scholar 

  • Klute A (1986) Methods of soil analysis. Part 1: Physical and mineralogical methods. In: Gee GG, Bauder JW (eds) Particle size analysis, 2nd edn. ASA and SSSA, Madison

    Google Scholar 

  • Lopez E, Soto B, Arias M, Nunez A, Rubinos D, Barral MT (1998) Adsorbent properties of red mud and its use for wastewater treatment. Water Res 32:1314–1322

    Article  Google Scholar 

  • Manual Técnico de Pedologia (2007) Fundação Instituto Brasileiro de Geografia e Estatística. Departamento de Recursos Naturais e Estudos Ambientais; Oliveira VA, coord; IBGE Rio de Janeiro

  • Mon J, Deng Y, Flury M, Harsh JB (2005) Cesium incorporation and diffusion in cancrinite, sodalite, zeolite, and allophane. Microporous Mesoporous Mater 86:277–286

    Article  Google Scholar 

  • Nadaroglu H, Kalkan E, Demir N (2010) Removal of copper from aqueous solution using red mud. Desalination 251:90–95

    Article  Google Scholar 

  • Ozsoy D, Kumbur H (2006) Adsorption of Cu(II) ions on cotton boll H. J Hazard Mater B136:911–916

    Article  Google Scholar 

  • Pinto MVS, Silva DL, Saraiva ACF (2012) Obtenção e caracterização de carvão ativado de caroço de buriti (Mauritia flexuosa L. f.) para a avaliação do processo de adsorção de cobre(II). Acta Amazônica 42:73–80

    Article  Google Scholar 

  • Santona L, Castaldi P, Melis P (2006) Evaluation of the interaction mechanisms between red muds and heavy metals. J Hazard Mater B136:324–329

    Article  Google Scholar 

  • Sarıa A, Tuzena M, Cıtaka D, Soylakb M (2007) Adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite from aqueous solution. J Hazard Mater 148:387–394

    Article  Google Scholar 

  • Tito GA, Chaves LHG, Ribeiro S, Souza RS (2008) Isotermas de adsorção de cobre por bentonita. Rev Caatinga 21:16–21

    Google Scholar 

  • Valentini A, Laranjeira MCM, Fiori S, Fávere VT (2000) Processo alternativo para remoção de cobre(II) e níquel(II) de soluções aquosas utilizando cápsulas de quitosana-álcool polivinílico. Quim Nova 23:12–15

    Article  Google Scholar 

  • Valladares GS, Pereira MG, Alves GC (1998) Aplicação de duas isotermas de adsorção de boro em solos de baixada do estado do Rio de Janeiro. Rev Bras Ciênc Solo 22:361–365

    Article  Google Scholar 

  • Von Sperling M (2005) Introdução à qualidade das águas e ao tratamento de esgotos, 3rd edn. UFMG, Belo Horizonte

    Google Scholar 

  • Zhua Y, Hua J, Wanga J (2012) Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan. J Hazard Mater 221–222:155–161

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Process No. 2009/02374-0), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Process No. 480555/2009-5) and Companhia Brasileira de Alumínio (CBA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiano T. da Conceição.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Conceição, F.T., Pichinelli, B.C., Silva, M.S.G. et al. Cu(II) adsorption from aqueous solution using red mud activated by chemical and thermal treatment. Environ Earth Sci 75, 362 (2016). https://doi.org/10.1007/s12665-015-4929-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-4929-y

Keywords

Navigation