Skip to main content
Log in

Submarine groundwater discharge as a source of dissolved nutrients to an arid coastal embayment (La Paz, Mexico)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Submarine groundwater discharge (SGD) was investigated in the southeastern portion of La Paz Bay (Baja California, Mexico) using radon (222Rn) as a natural tracer. In the absence of permanent surface flows in this arid region, we hypothesize SGD is a major regional source of dissolved nutrients. Four spatial surveys showed higher radon and nutrient (NH4, NO3, NO2, PO4 and SiO4) values in the winter than summer lagging rainfall by 3–4 months. The surveys revealed two sites (Balandra and Merito) with a stronger radon signal. Intensive time series (12–24 h) measurements at those sites were used to estimate SGD fluxes using a radon mass balance approach. In Balandra, SGD was estimated to be 0.18 m3 m−2 day−1 and significant correlations between radon and nutrients (NO3 and SiO4) were observed. In Merito, SGD rates were estimated to be 0.10 m3 m−2 day−1 and no correlations between nutrients and 222Rn were observed. The difference between the two sites was interpreted to be related to different components dominating SGD (i.e., fresh SGD in Balandra and saline SGD in Merito). The estimated SGD-derived nutrients fluxes were 2–52, 0.04–0.94, 7–164 mmol m2 day−1 for dissolved inorganic nitrogen, phosphate, and silicate, respectively. These fluxes could explain between 5 and 20 % of the regional marine primary productivity values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aranda-Cirerol N, Herrera-Silveira JA, Comin FA (2006) Nutrient water quality in a tropical coastal zone with groundwater discharge, northwest Yucatan, Mexico. Estuar Coast Shelf Sci 68:445–454

    Article  Google Scholar 

  • Aranda-Gómez JJ (1982) El basamento metamórfico en la región de Todos Santos, B.C.S. Informe preliminar, México. DF Soc Geol Mexicana Convención Nacional Programa y Resúmenes, pp 103–104

  • Boehm AB, Paytan A, Shellenbarger GG, Davis KA (2006) Composition and flux of groundwater from a California beach aquifer: implications for nutrient supply to the surf zone. Cont Shelf Res 26:269–282

    Article  Google Scholar 

  • Boehm AB, Shellenbarger GG, Paytan A (2004) Groundwater discharge: potential association with fecal indicator bacteria in the surf zone. Environ Sci Technol 38:3558–3566

  • Bratton JF (2010) The three scales of submarine groundwater flow and discharge across passive continental margins. J Geol 118:565–575

    Article  Google Scholar 

  • Burnett WC, Dulaiova H (2003) Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements. J Environ Radioact 69:21–35

    Article  Google Scholar 

  • Burnett W, Bokuniewicz H, Huettel M, Moore WS, Taniguchi M (2003) Groundwater and pore water inputs to the coastal zone. Biogeochemistry 66:3–33

    Article  Google Scholar 

  • Burnett WC, Aggarwal PK, Aureli A, Bokuniewicz H, Cable JE, Charette MA, Kontar E, Krupa S, Kulkarni KM, Loveless A, Moore WS, Oberdorfer JA, Oliveira J, Ozyurt IN, Povinec P, Privitera AMG, Rajar R, Ramessur RT, Schollten J, Stieglitz T, Taniguchi M, Turner JV (2006) Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci Total Environ 367:498–543

    Article  Google Scholar 

  • Cervantes-Duarte R, Reyes-Salinas A, Verdugo-Diaz G, Valdez-Holguín JE (2003) Efecto de la concentración de clorofila a y seston superficial sobre la transparencia del agua de mar en una región costera del Golfo de California, México. Oceánides 18:1–11

    Google Scholar 

  • Chávez-López S (2010) Hidrología de la Reserva de la Biosfera del Vizcaíno, B.C.S. In: Beltrán Morales LF, Chávez López S, Ortega Rubio A (eds) Valoración Hidrosocial en la Reserva de la Biosfera del Vizcaíno, B C S; México. CIBNOR, La Paz, Mexico, pp 35–52

  • Cruz-Orozco R, Martinez-Noriega C, Mendoza-Maravilla A (1996) Batimetría y sedimentos de la Bahía de La Paz, B.C.S., México. Oceánide 11:21–27

  • Dulaiova H, Peterson R, Burnett W, Lane-Smith D (2005) A multi-detector continuous monitor for assessment of 222Rn in the coastal ocean. J Radioanal Nucl Chem 263:361–365

    Article  Google Scholar 

  • Dulaiova H, Gonneea ME, Henderson PB, Charette MA (2008) Geochemical and physical sources of radon variation in a subterranean estuary—implications for groundwater radon activities in submarine groundwater discharge studies. Mar Chem 110:120–127

    Article  Google Scholar 

  • Dulaiova H, Camilli R, Henderson PB, Charette MA (2010) Coupled radon, methane and nitrate sensors for large-scale assessment of groundwater discharge and non-point source pollution to coastal waters. J Environ Radioact 101:553–563

    Article  Google Scholar 

  • Garrison GH, Glenn CR, McMurtry GM (2003) Measurement of submarine groundwater discharge in Kahana Bay, O’ahu, Hawaii. Limnol Oceanogr 48:920–928

    Article  Google Scholar 

  • Gleeson J, Santos IR, Maher DT, Golsby-Smith L (2013) Groundwater–surface water exchange in a mangrove tidal creek: evidence from natural geochemical tracers and implications for nutrient budgets. Mar Chem 156:27–37. doi:10.1016/j.marchem.2013.02.001

    Article  Google Scholar 

  • Herrera-Silveira JA (1998) Nutrient–phytoplankton production relationships in a groundwater-influenced tropical coastal lagoon. Aquat Ecosyst Health Manag 1:373–385

    Google Scholar 

  • Hwang DW, Lee YW, Kim G (2005) Large submarine groundwater discharge and benthic eutrophication in Bangdu Bay on volcanic Jeju Island, Korea. Limnol Oceanogr 50:1393–1403

    Article  Google Scholar 

  • Johannes RE (1980) The ecological significance of the submarine groundwater discharge. Mar Ecol Prog Ser 3:365–373

    Article  Google Scholar 

  • Kelly RP, Moran SB (2002) Seasonal changes in groundwater input to a well-mixed estuary estimated using radium isotopes and implications for coastal nutrient budgets. Limnol Oceanogr 47:1807–1976

    Google Scholar 

  • Kim G, Ryu JW, Yang HS, Yun ST (2005) Submarine groundwater discharge (SGD) into the Yellow Sea revealed by Ra-228 and Ra-226 isotopes: implications for global silicate fluxes. Earth Planet Sci Lett 237:156–166

    Article  Google Scholar 

  • Krest JM, Moore WS, Gardner RL, Morris JT (2000) Marsh Nutrient supplied by groundwater discharge: evidence from radium measurments. Glob Biogeochem Cycles 14:36-47. doi:10.1029/1999GB001197

  • Kroeger KD, Charette MA (2008) Nitrogen biogeochemistry of submarine groundwater discharge. Limnol Oceanogr 53:1025–1039

    Article  Google Scholar 

  • Lamontagne S, Le Gal La Salle C, Hancock GJ, Webster IT, Simmons CT, Love AJ, James-Smith J, Smith AJ, Kämpf J, Fallowfield HJ (2008) Radium and radon radioisotopes in regional groundwater, intertidal groundwater, and seawater in the Adelaide Coastal Waters Study area: implications for the evaluation of submarine groundwater discharge. Mar Chem 109:318–336

    Article  Google Scholar 

  • Largier JL, Hollibaugh JT, Smith SV (1997) Seasonally hypersaline estuaries in Mediterranean-climate regions. Estuar Coast Shelf Sci 47:789–797

    Article  Google Scholar 

  • Macklin PA, Maher DT, Santos IR (2014) Estuarine canal estate waters: hotspots of CO2 outgassing driven by enhanced groundwater discharge? Mar Chem 167:82–92. doi:10.1016/j.marchem.2014.08.002

    Article  Google Scholar 

  • Makings U, Santos IR, Maher DT, Golsby-Smith L, Eyre BD (2014) Importance of budgets for estimating the input of groundwater-derived nutrients to an eutrophic tidal river and estuary. Estuar Coast Shelf Sci 143:65–76. doi:10.1016/j.ecss.2014.02.003

    Article  Google Scholar 

  • Mendoza-Salgado RA, Lechuga-Deveze CH, Ortega-Rubio A (2006) Influence of rainfall on a subtropical arid zone coastal system. J Arid Environ 66:247–256

    Article  Google Scholar 

  • Michael HA, Mulligan AE, Harvey CF (2005) Seasonal oscillations in water exchange between aquifers and the coastal ocean. Nature 436:1145–1148

    Article  Google Scholar 

  • Moore WS (1997) High fluxes of radium and barium from the mouth of the Ganges-Brahmaputra River during low river discharge suggest a large groundwater source. Earth Planet Sci Lett 150:141–150

    Article  Google Scholar 

  • Moore WS (2010) The effect of submarine groundwater discharge on the ocean. Ann Rev Mar Sci 2:59–88

    Article  Google Scholar 

  • Mulligan AE, Charette MA (2006) Intercomparison of submarine groundwater discharge estimates from a sandy unconfined aquifer. J Hydrol 327:411–425

    Article  Google Scholar 

  • Niencheski LFH, Windom HL, Moore WS, Jahnke RA (2007) Submarine groundwater discharge of nutrients to the ocean along a coastal lagoon barrier, Southern Brazil. Mar Chem 106:546–561

    Article  Google Scholar 

  • Perkins AK, Santos IR, Sadat-Noori M, Gatland JR, Maher DT (2015) Groundwater seepage as a driver of CO2 evasion in a coastal lake (Lake Ainsworth, NSW, Australia). Environ Earth Sci 1–14. doi:10.1007/s12665-015-4082-7

  • Peterson RN, Burnett WC, Dimova N, Santos IR (2009) Comparison of measurement methods for radium-226 on manganese-fiber. Limnol Oceanogr Methods 7:196–205

    Article  Google Scholar 

  • Povinec PP, Burnett WC, Beck A, Bokuniewicz H, Charette M, Gonneea ME, Groening M, Ishitobi T, Kontar E, Liong Wee Kwong L, Marie DEP, Moore WS, Oberdorfer JA, Peterson R, Ramessur R, Rapaglia J, Stieglitz T, Top Z (2012) Isotopic, geophysical and biogeochemical investigation of submarine groundwater discharge: IAEA-UNESCO intercomparison exercise at Mauritius Island. J Environ Radioact 104:24–45

    Article  Google Scholar 

  • Reyes-Salinas A, Cervantes-Duarte R, Morales-Pérez RA, Valdez-Holguín JE (2003) Variabilidad estacional de la productividad primaria y su relación con la estratificación vertical en la bahía de la Paz, B.C.S. Hidrobiológica 13:103–110

  • Rocha C (2000) Density-driven convection during flooding of warm, permeable intertidal sediments: the ecological importance of the convective turnover pump. J Sea Res 43:1–14

    Article  Google Scholar 

  • Sanders CJ, Santos IR, Barcellos R, Silva Filho EV (2012) Elevated concentrations of dissolved Ba, Fe and Mn in a mangrove subterranean estuary: consequence of sea level rise? Cont Shelf Res 43:86–94. doi:10.1016/j.csr.2012.04.015

    Article  Google Scholar 

  • Santos IR, Lechuga-Deveze C, Peterson RN, Burnett WC (2011) Tracing submarine hydrothermal inputs into a coastal bay in Baja California using radon. Chem Geol 282:1–10

    Article  Google Scholar 

  • Santos IR, Cook PLM, Rogers L, de Weys J, Eyre BD (2012a) The ‘salt wedge pump’: convection-driven porewater exchange as a source of dissolved organic and inorganic carbon and nitrogen to an estuary. Limnol Oceanogr 57:1415–1426

    Article  Google Scholar 

  • Santos IR, Eyre BD, Huettel M (2012b) The driving forces of porewater and groundwater flow in permeable coastal sediments: a review. Estuar Coast Shelf Sci 98:1–15

    Article  Google Scholar 

  • Santos IR, de Weys J, Tait DR, Eyre BD (2013) The contribution of groundwater discharge to nutrient exports from a coastal catchment: post-flood seepage increases estuarine N/P ratios. Estuaries Coasts 36:56–73

    Article  Google Scholar 

  • Santos IR, Bryan KR, Pilditch CA, Tait DR (2014) Influence of porewater exchange on nutrient dynamics in two New Zealand estuarine intertidal flats. Mar Chem 167:57–70. doi:10.1016/j.marchem.2014.04.006

    Article  Google Scholar 

  • Santos IR, Beck M, Brumsack H-J, Maher DT, Dittmar T, Waska H, Schnetger B (2015) Porewater exchange as a driver of carbon dynamics across a terrestrial-marine transect: insights from coupled 222Rn and pCO2 observations in the German Wadden Sea. Mar Chem 171:10–20. doi:10.1016/j.marchem.2015.02.005

    Article  Google Scholar 

  • Schmidt A, Stringer CE, Haferkorn U, Schubert M (2008) Quantification of groundwater discharge into lakes using radon-222 as naturally occurring tracer. Environ Geol. doi:10.1007/s00254-00008-01186-00253

    Google Scholar 

  • Schubert M, Paschke A, Lieberman E, Burnett WC (2012) Air–water partitioning of 222Rn and its dependence on water temperature and salinity. Environ Sci Technol 46:3905–3911

    Article  Google Scholar 

  • Sedlock RL, Ortega-Gutiérrez F, Speed RC (1993) Tectono-stratigraphic terrenes and tectonic evolution of Mexico. Geol Soc Am Spec Pap 278:153

    Google Scholar 

  • Sevilla-Unda VE (1994) Reconocimiento Hidrogeológico del Valle el Coyote, Baja California Sur. México. Tesis de Licenciatura. Universidad Autónoma de Baja California Sur. pp 101

  • Shellenbarger GG, Monismith SG, Genin A, Paytan A (2006) The importance of submarine groundwater discharge to the nearshore nutrient supply in the Gulf of Aqaba (Israel). Limnol Oceanogr 51:1876–1886

    Article  Google Scholar 

  • Slomp CP, Van Cappellen P (2004) Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J Hydrol 295:64–86

    Article  Google Scholar 

  • Stieglitz TC, Cook PG, Burnett WC (2010) Inferring coastal processes from regional-scale mapping of 222Radon and salinity: examples from the Great Barrier Reef, Australia. J Environ Radioact 101:544–552

    Article  Google Scholar 

  • Street JH, Knee KL, Grossman EE, Paytan A (2008) Submarine groundwater discharge and nutrient addition to the coastal zone and coral reefs of leeward Hawai’i. Mar Chem 109:355–376

    Article  Google Scholar 

  • Strickland JHD, Parsons T (1972) A practical handbook of seawater analysis, 2nd edn. Fisheries Research Board of Canada Bulletin, Ottawa

    Google Scholar 

  • Swarzenski PW, Burnett WC, Greenwood WJ, Herut B, Peterson R, Dimova N, Shalem Y, Yechieli Y, Weinstein Y (2006) Combined time-series resistivity and geochemical tracer techniques to examine submarine groundwater discharge at Dor Beach, Israel. Geophys Res Lett 33:L24405. doi:10.1029/2006GL028282

    Article  Google Scholar 

  • Tait DR, Erler DV, Santos IR, Cyronak TJ, Morgenstern U, Eyre BD (2014) The influence of groundwater inputs and age on nutrient dynamics in a coral reef lagoon. Mar Chem 166:36–47. doi:10.1016/j.marchem.2014.08.004

    Article  Google Scholar 

  • Valiela I, Costa J, Foreman K, Teal JM, Howes B, Aubrey D (1990) Transport of groundwater-borne nutrients from watersheds and their effects on coastal waters. Biogeochemistry 10:177–197

    Article  Google Scholar 

  • Velasco-García JA (2009) Ambientes Geológicos Costeros del Litoral de la Bahía de la Paz. Baja California Sur, Mexico

    Google Scholar 

  • Waska H, Kim G (2010) Differences in microphytobenthos and macrofaunal abundances associated with groundwater discharge in the intertidal zone. Mar Ecol Prog Ser 407:159–172

    Article  Google Scholar 

  • Waska H, Kim S, Kim G, Peterson RN, Burnett WC (2008) An efficient and simple method for measuring 226Ra using the scintillation cell in a delayed coincidence counting system (RaDeCC). J Environ Radioact 99:1859–1862

    Article  Google Scholar 

  • Weinstein Y, Burnett WC, Swarzenski PW, Shalem Y, Yechieli Y, Herut B (2007) Role of aquifer heterogeneity in fresh groundwater discharge and seawater recycling: An example from the Carmel Coast, Israel. J Geophys Res 112:C12016. doi:10.1029/2007JC004112

    Article  Google Scholar 

  • Young MB, Gonneea ME, Fong DA, Moore WS, Herrera-Silveira J, Paytan A (2008) Characterizing sources of groundwater to a tropical coastal lagoon in a karstic area using radium isotopes and water chemistry. Mar Chem 109:377–394

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Miguel Angel Juarez, Juan José Ramirez and Ivan Castro who provided valuable help in the field. Mexico’s Consejo Nacional de Ciencia y Tecnología (CONACYT) financially supported this research and MU’s Master’s Thesis from which this paper has been derived (Project Grant 49815 and Scholarship Grant 337213). IRS acknowledges support from the Australian Research Council (DP120101645).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mabilia Urquidi-Gaume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urquidi-Gaume, M., Santos, I.R. & Lechuga-Deveze, C. Submarine groundwater discharge as a source of dissolved nutrients to an arid coastal embayment (La Paz, Mexico). Environ Earth Sci 75, 154 (2016). https://doi.org/10.1007/s12665-015-4891-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-4891-8

Keywords

Navigation